# **User's Guide**

**RIGOL** 

Publication number UGB02101-1110 Oct 2008

DG2000 Series Function/Arbitrary Waveform Generator

DG2041A/DG2021A

- © 2006 **RIGOL** Technologies, Inc. All Rights Reserved
- **RIGOL** products are protected by patent law in and outside of P.R. China.
- Information in this publication replaces all previously corresponding material.
- **RIGOL** Technologies, Inc. reserves the right to modify or change part of or all the specifications and pricing policies at company's sole decision.

**NOTE: RIGOL** is registered trademark of **RIGOL** Technologies, Inc.

## **Safety Notices**

Review the following safety precautions carefully before operating the instrument to avoid any personal injury or damage to the instrument or products connected to it.

To avoid the potential hazards, it is necessary to use the instrument in the manner specified in this user guide.

The instrument should be serviced only by qualified personnel.

#### **Avoid Fire or Personal Injury**

**Use proper power line.** Only the special power line of the products approved by the State should be used.

**Insert or draw properly.** Do not insert draw when the probe and the testing lead are connected with the power.

**Ground the instrument.** This generator is grounded through the protective terra conductor of the power cord. To avoid electric shock, the grounding conductor must be connected to the earth ground. Make sure that the instrument is properly grounded before connecting the input or output terminals.

**Observe All the Ratings of the Terminal.** To avoid fire or shock, observe all the ratings and symbols that marked on the instrument. Read the user guide carefully before making connections to the instrument.

**Do not operate without Covers.** Do not operate your generator with covers or panels removed.

**Avoid Circuit or Wire exposed.** Do not touch the exposed connections or components when the power is on.

**Do not operate with suspected failures.** If you suspect there is damage with this product, you have it inspected by qualified service personnel authorized by **RIGOL** before further operations.

**Provide Proper Ventilation.** 

Do not operate in wet/damp conditions.

Do not operate in an explosive atmosphere.

Keep the product's surfaces clean and dry.

### **Safety Terms and Symbols**

**Terms in this guide.** These terms may appear in this manual:



**WARNING:** Warning statements indicate the conditions or practices that could result in injury or loss of life.



**CAUTION:** Caution statements indicate the conditions or practices that could result in damage to this product or other property.

**Terms on the product.** These terms may appear on the product:

**DANGER** indicates an injury or hazard that may be immediately happen.

**WARNING** indicates an injury or hazard that may be not immediately happen.

**CAUTION** indicates that a potential damage to the instrument or other property might occur.

**Symbols on the product.** These symbols may appear on the instrument:



Hazardous Voltage



Refer to the Instructions



Protective Earth Ground



Chassis Ground



Earth Ground

### The Introduction of DG2000 Series

This manual covers the following four types of DG2000 Series Function/ Arbitrary Waveform Generators: DG2041A、DG2021A.

**RIGOL** DG2000 Series Function/ Arbitrary Waveform Generator adopt the direct digital synthesizer (DDS) technology, which can provide stable, high-precision, pure and low distortion sine signal. It can also provide 40MHz square waveform with fast rising and falling edges. Its combination of excellent system features, easiness in usage and versatile functions makes this generator a perfect solution for your job now and in the future.

DG2000 Series Function/ Arbitrary Waveform Generator have clear and simple Front-Panel. The user-friendly panel layout and instructions, versatile terminals, direct graph interface, built-in instructions and help system have greatly simplified the operation process. Thus, users do not have to spend a great deal of time learning and familiarizing the operation of the generator before they can use it proficiently. The built-in AM, FM, PM, PWM and FSK modulating functions generate modulated waveform at ease, without the help of a separate modulating source. The USB I/O, LAN and GPIB are the standard configuration. Remote instructions meet the SCPI specification requirements.

From the characteristics and specifications given below, you will understand how DG2000 can satisfy your measurement requirements.

- 16+2 channels digital output module (optional) together with the analogue channel can rebuild the most commonly used mixed signal in daily practice.
- DDS technology provides precise, stable and low distortion output signal.
- 10 standard waveforms:
   Sine, Square, Ramp, Pulse, Noise, Sinc, Exponential Rise, Exponential Fall, Cardiac and DC.
- 100MSa/s sampling rate, enable to edit arbitrary waveform with 14-bit, 512K points.
- Frequency characteristics:

Sine/ Square:  $1\mu Hz$  to 40 MHz

Ramp: 1µHz to 400 kHz

Pulse: 500µHz to 16MHz

White Noise: 20MHz bandwidth (-3dB)
Arbitrary waveform: 1µHz to 12MHz

• Amplitude range:  $2mV_{pp}$  to  $10V_{pp}$  (50  $\Omega$ )

40mV<sub>pp</sub> to 20V<sub>pp</sub> (High Z)

- Abundant modulation function, various modulated waveform: AM, FM, PM, PWM and FSK.
- Linear, logarithm Sweep and Burst mode.
- Abundant I/O: External Modulation Source, External 10 MHz Reference Input, External trigger source, waveform output, synchronous digital signal output, Internal 10 MHz Reference output.
- Support USB storage device; store and read waveform configure parameters or the edited arbitrary waveform with USB devices. System Updating could also be performed by using USB devices.
- Remote control is realized by using the LAN.
- Standard interface: USB Host & Device, RS-232, GPIB.
- Graph interface which shows the signal setting directly.
- Chinese/English user interface.
- Embedded Chinese/English Help System.
- Support Chinese/English Input.

#### Note:

All the specifications described in this guide are according to DG2041A, if you need to know the particular specifications about the other type, please see "Specifications" in Chapter 5.

## **Content**

| Safety N     | Notices                              | .II |
|--------------|--------------------------------------|-----|
| The Intr     | roduction of DG2000 Series           | . V |
| Chapter 1    | Getting Started                      | 1-1 |
| General      | I Inspection1                        | L-2 |
| Handle A     | Adjustment                           | L-3 |
| The Fro      | ont/Rear Panel 1                     | L-4 |
| The DG       | S2000 User Interface 1               | L-7 |
| To Set a     | a Waveform1                          | L-8 |
| To Set N     | Modulate/ Sweep/Burst1-              | 11  |
| To Set 7     | Trigger/Output1-                     | 13  |
| To Use       | Digital Input1-                      | 14  |
| To Use       | Store/Utility/Help Function1-        | 15  |
| Chapter 2    | Operating Your Generator             | 2-1 |
| The Mer      | enu/Graph Mode2                      | 2-2 |
| To Set S     | Sine Signals                         | 2-3 |
| To Set S     | Square Signals                       | 2-7 |
| To Set F     | Ramp Signals2-                       | 10  |
| To Set F     | Pulse Signals2-                      | 12  |
| To Set N     | Noise Signals2-                      | 16  |
| To Set A     | Arbitrary Signals2-                  | 17  |
| To Gene      | erate the Modulated Waveform2-       | 30  |
| To Gene      | erate Sweep2-                        | 42  |
|              | erate Burst2-                        |     |
| To Store     | e and Recall2-                       | 49  |
|              | the Utility Function2-               |     |
| How to       | Use the Built-in Help System2-       | 81  |
| Chapter 3    | Application & Examples               | 3-1 |
| Example      | e 1: To Generate a Sine Wave         | 3-1 |
| Example      | e 2: To generate a Square Wave       | 3-2 |
| Example      | e 3: To generate a Ramp Wave3        | 3-3 |
| Example      | e 4: To generate a Pulse Wave3       | 3-4 |
| Example      | e 5: To Generate a Noise Wave3       | 3-6 |
| Example      | e 6: To generate Arbitrary Waveform3 | 3-7 |
| Example      | e 7: To Create an Arbitrary Waveform | 3-8 |
| © 2006 RIGOL | L Technologies, Inc                  | VII |

|                                             | RIGOL |
|---------------------------------------------|-------|
| Example 8: To Generate an AM Waveform       | 3-10  |
| Example 9: To Generate an FSK Waveform      | 3-12  |
| Example 10: To generate a PWM Waveform      | 3-14  |
| Example 11: To generate a Linear Sweep      | 3-16  |
| Example 12: To generate a Burst Waveform    | 3-18  |
| Chapter 4 Prompt messages & troubleshooting | 4-1   |
| Prompting Messages                          | 4-1   |
| Troubleshooting                             | 4-17  |
| Chapter 5 Specifications                    | 5-1   |
| Specifications                              | 5-2   |
| General Specifications                      | 5-7   |
| Chapter 6 Appendix                          | 6-1   |
| Appendix A DG2000 Series Accessories        | 6-1   |
| Appendix B Warranty                         | 6-2   |
| Appendix C General Care and Cleaning        | 6-3   |
| Appendix D Contact RIGOL                    | 6-4   |
| Index                                       | т     |

# Chapter 1 Getting Started

This chapter covers the following topics:

- General Inspection
- Handle Adjustment
- The Front/Rear Panel
- The DG2000 User Interface
- To Set a Waveform
- To Set Modulate/ Sweep/Burst
- To Set Trigger/Output
- To Use Digital Input
- To Use Store/Utility/Help Function

## **General Inspection**

When you get a new DG2000 Series Function/ Arbitrary Waveform Generator, you are suggested to take the following steps to inspect the instrument.

#### 1. Inspect the shipping container for damage.

If there are damages in the packing or foam, keep them until the whole machine and the accessories passing the electric and mechanical testing.

#### 2. Check the accessories.

Accessories supplied with the instrument are listed in chapter 6 "Appendix A: DG2000 Series Accessories".

If the contents are incomplete or damaged, please contract the local selling representative of **RIGOL**.

#### 3. Inspect the instrument.

In case any mechanical damage or defect, or if the instrument does not operate properly or pass performance tests, notify your **RIGOL** Sales Representative.

If the shipping container is damaged, or the cushioning materials show signs of stress, notify the carrier of your **RIGOL** sales office. Keep the shipping materials for the carrier's inspection. **RIGOL** offices will arrange for repair or replacement at **RIGOL**'s option without waiting for claim settlement.

## **Handle Adjustment**

To adjust the handle position of DG2000 Function/ Arbitrary Waveform Generator, please grip the handle by the sides and pull it outward. Then, make the handle rotate to the desired position. The operating methods are shown below in figure 1-1 and figure 1-2.

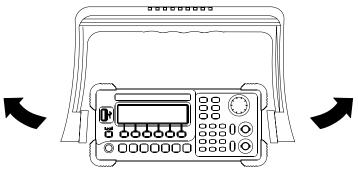



Figure 1-1 The Method of Adjusting the Handle

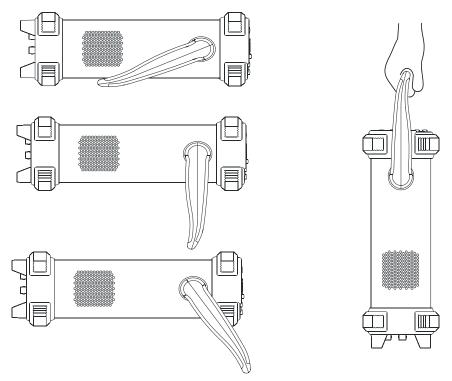



Figure 1-2 The Viewing Positions and Carrying Position

### The Front/Rear Panel

When you get a new DG2000 Series Function/ Arbitrary Waveform Generator, first you need to know how to operate the front/ rear panel correctly. This chapter will make a brief introduction and description for the operation and functions of the Front/ Rear Panel.

#### The Front Panel at a Glance

The DG2000 Series Function/ Arbitrary Waveform Generator has clear and simple front panel. See figure 1-3 and figure 1-4. The Front Panel has a knob, functional keys and menu buttons. The 6 grey buttons below the screen are menu buttons, with the help of which, you can choose different options on the current menu. The rests are the functional keys, with which you can enter different function menus or obtain specific functional applications directly.

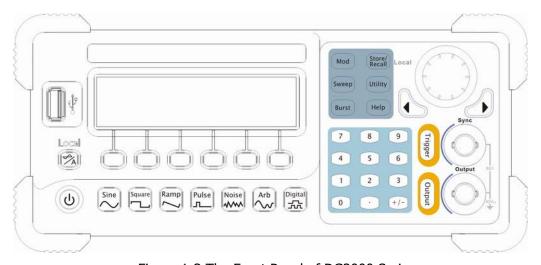



Figure 1-3 The Front Panel of DG2000 Series

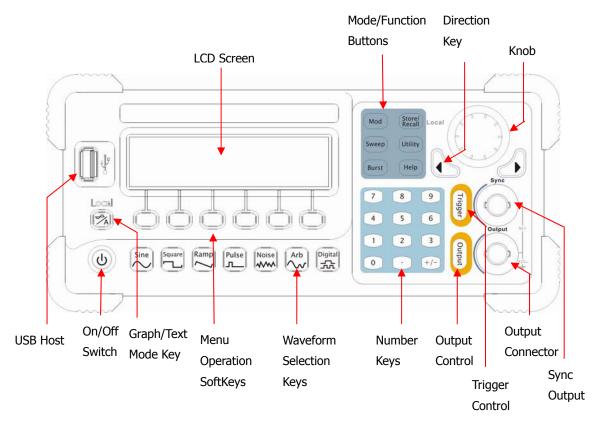



Figure 1-4 The Front Panel Operation Instruction of DG2000 Series



**NOTE:** The [Output] connector and [Sync] connector on the front panel can be only used for the signal output. If they are used for input, it may make the circuit burned and the instrument in trouble.

### The Rear Panel at a Glance

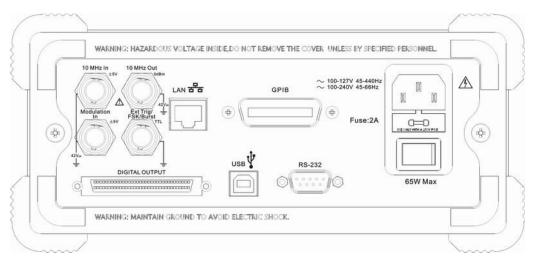



Figure 1-5 The Rear Panel of DG2000 Series

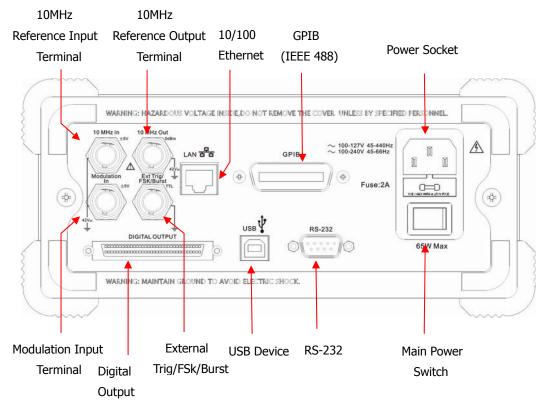



Figure 1-6 The Rear Panel Operation Instruction of DG2000 Series

### The DG2000 User Interface

DG2000 Series Function/ Arbitrary Waveform Generator provides two display modes: Menu and Graph. Under the Menu display mode, the display interface is divided into 4 parts: state, waveform icon, operation menu, and parameter display. See figure 1-7. Under the Graph display mode, you can check the current waveform parameters in the graphics. The display interface is also divided into 4 parts: state, parameter display, display menu button and waveform display. See figure 1-8. The operation menu will appear at the bottom of the screen when you press any menu button. These two display modes can be switched to each other by pressing the // A button.

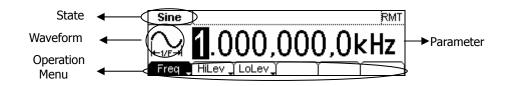



Figure 1-7 The Interface Instruction of Menu Mode

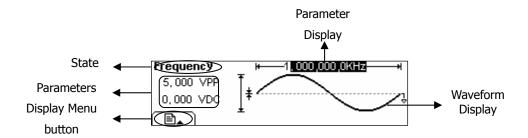



Figure 1-8 The Interface Instruction of Graph Mode

#### Note:

The signs for the buttons in this manual are the same as the panel buttons. Please note that the signs for the functional buttons on the operation panel are represented by squared words, such as Sine, which represents the transparent functional key with Sine on it on the front panel, while the menu buttons are represented by shadow words such as Frequency, which means the "Frequency" option in the Sine menu.

### To Set a Waveform

At the left of the operation panel, there is a set of buttons with waveform icon. See figure 1-9. The exercise below will help you familiarized with the waveform selection settings. The instructions of the waveform setting are all carried out in the Menu Display Mode.



Figure 1-9 The Waveform Selection Buttons

1. Press Sine button, and the waveform icon turns into Sine with a "Sine" typeface in the state area. DG2000 Series Generator can generate Sine signal with frequency from 1µHz to 40MHz. By setting Frequency/Period, Amplitude/ High Level, Offset/ Low level, the Sine signal with different parameters can be generated.



Figure 1-10 The Sine Waveform in the Menu Display Mode

As shown in figure 1-10, the default signal parameters are: 1kHz Frequency, 5.0  $V_{pp}$  Amplitude and  $0V_{dc}$  Offset.

2. Press Square button, and the waveform icon turns into Square with a "Square" typeface in the state area. DG2000 Series Generator can generate Square signal with frequency from 1µHz to 40MHz and variable duty cycle. By setting Frequency/Period, Amplitude/ High Level, Offset/ Low level, and Duty Cycle, the Square signal with different parameters can be generated.

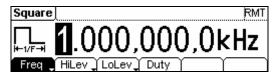



Figure 1-11 The Square Waveform in the Menu Display Mode

As shown in figure 1-11, the default signal parameters are: 1kHz Frequency, 5.0

V<sub>pp</sub> Amplitude, 0 V<sub>dc</sub> Offset and 50% Duty Cycle.

3. Press Ramp button, and the waveform icon turns into Ramp with a "Ramp" typeface in the state area. DG2000 Series Generator can generate Ramp signal with frequency from 1µHz to 400 kHz and variable Symmetry. By setting Frequency/Period, Amplitude/ High Level, Offset/ Low level, and Symmetry, the Ramp signal with different parameters can be generated.

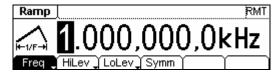



Figure 1-12 The Ramp Waveform in the Menu Display Mode

As shown in figure 1-12, the default signal parameters are: 1kHz Frequency, 5.0  $V_{pp}$  Amplitude, 0 V<sub>dc</sub> Offset and 50% Symmetry.

4. Press Pulse button, and the waveform icon turns into Pulse with a "Pulse" typeface in the state area. DG2000 Series Generator can generate Pulse signal with frequency from 500μHz to 16MHz and variable Pulse Width and Edge Time. By setting Frequency/Period, Amplitude/ High Level, Offset/ Low level, Pulse Width and Edge Time, the Pulse signal with different parameters can be generated.

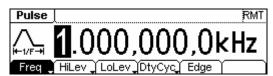



Figure 1-13 The Pulse Waveform in the Menu Display Mode

As shown in figure 1-13, the default signal parameters are: 1kHz Frequency, 5.0  $V_{pp}$  Amplitude, 0  $V_{dc}$  Offset, 20% Duty Cycle and 50ns Edge Time.

5. Press Noise button, and the waveform icon turns into Noise with a "Noise" typeface in the state area. DG2000 Series Generator can generate Noise signal with Band Width up to 20MHz. By setting Amplitude/ High Level, Offset/ Low level, the Noise signal with different parameters can be generated.



Figure 1-14 The Noise Waveform in the Menu Display Mode

As shown in figure 1-14, the default signal parameters are: 5.0  $V_{pp}$  Amplitude and 0  $V_{dc}$  Offset.

6. Press Arb button, and the waveform icon turns into Arb with an "Arb" typeface in the state area. DG2000 Series Generator can generate repeatable arbitrary waveform signals with at most 512K points and 12MHz frequency. By setting Frequency/Period, Amplitude/ High Level, Offset/ Low level, arbitrary waveform signals with different parameters can be generated.




Figure 1-15 The Arbitrary Waveform in the Menu Display Mode

As shown in figure 1-15, the default Exponential Rise Signal parameters are: 1kHz Frequency,  $5.0 V_{pp}$  Amplitude and  $0 V_{dc}$  Offset.

7. Press Digital button, and enter the interface of Logic Signal Output Module. For the detailed explanations, please refer to User's Guide of DG2000 Logic Signal Output Module.

## To Set Modulate/ Sweep/Burst

As shown in figure 1-16, there are three buttons on the front panel, which are used for Modulating, sweeping and bursting settings. The instructions below will help you familiarize with the setting of these functions.



Figure 1-16 The Modulate/ Sweep/ Burst button

1. Press Mod button, and a Modulated waveforms will be generated.

Parameters are set by using the menu buttons. The modulated waveform can be changed by changing the parameters such as Type, Internal/External Modulation, Depth, Frequency, Waveform, etc.

DG2000 Series can modulate waveform by using AM, FM, PM, PWM and FSK. Sine, Square, Ramp or Arbitrary waveforms can be modulated (Pulse, Noise and DC cannot be modulated).

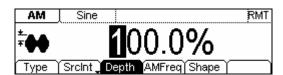



Figure 1-17 The Modulated Waveform in the Menu Display Mode

2. Press Sweep button, Sine, Square, Ramp or Arbitrary waveform can be swept (Pulse, Noise and DC can not be swept).

In the Sweep Mode, DG2000 Series generate signal with variable frequencies.



Figure 1-18 The Sweep Waveform in the Menu Display Mode

3. Press Burst button, Burst for Sine, Square, Ramp, Pulse or Arbitrary waveform can be generated (Noise can only be used in the gated Burst).

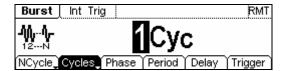



Figure 1-19 The Burst Waveform in the Menu Display Mode

### **Term Explanation**

**Burst**: Output Waveforms with set cycle times

Burst can last for certain times of waveform cycle (N-Cycle Burst) or be controlled by external gated signals (Gated Burst). Burst applies to all kinds of waveforms, but noise can only be used in gated burst. Generally it is called BURST function within every Signal Generator.

## To Set Trigger/Output

As shown in figure 1-20, there are two buttons on the right side of the operation panel, which are used to set Trigger and Output Control. The instruction below will help you familiarize with these functions.



Figure 1-20 The Trigger/Output Button

- 1. Press Trigger Button, choose internal/external or manual Trigger (Manual Trigger can only be used in Sweep and N-Cycle Burst)
  - The default setting for Trigger is "Internal". In this mode, when the Sweep or Burst Mode is also selected, the Generator will continuously generate burst. At this time, press Trigger button, the instrument will shift from the "Automatic" Trigger mode into "Manual" Trigger mode.
  - When the generator uses the" External" Trigger Mode, if the Sweep or the Burst Mode is selected, the signal will be continuously generated. At this time, press Trigger button, the instrument state will not change, and it will show the information "The instrument has already been triggered".
  - Every time you press the <u>Trigger</u> button, "Manual" Trigger will start a sweep or generate a burst. Press the button again, and the generator will be triggered again.
- 2. Press Output Button, activate or deactivate the output signal.

  If an overload message is shown, disconnect the external equipment from the output terminals and press Output button, reactivate the output terminal.

## To Use Digital Input

As shown in figure 1-21, there are two groups of buttons on the operation panel, which are the direction button, the knob and the keypad. The instruction below will help you familiarize with the Digital Input Function.

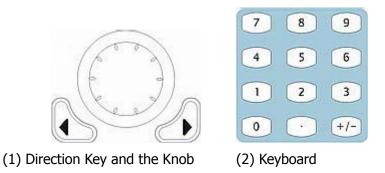



Figure 1-21 The Front Panel Digital Input

- 1. Use the Direction keys to move the cursor left or right. Rotate the knob to change a digit (clockwise to increase 1), and the range of digit is 0~9.
- 2. Use the Keypad to set the parameters values of the waveforms, which can change its value directly.

## To Use Store/Utility/Help Function

As shown in figure 1-22, there are three buttons on the operation panel, which are used to call the store/recall, utility and help function. The instruction below will help you familiarize with these Functions.



Figure 1-22 The Store/Recall, Utility and Help Button

- 1. The Store/Recall Button is used to store waveform data and configure information.
- 2. The <u>Utility</u> Button is used to set the auxiliary system function, change the output configure parameters, interface setting, system setting information or perform the instrument self-test and read the calibration information, etc.
- 3. The Help Button is used to see the help information.

## Operation Instruction

#### To get help:

To get help on any key of the front panel, press the key and last for 1 second, then the help message will appear.

## Chapter 2 Operating Your Generator

Up to now you have got a brief understanding of the front/rear panel, every function control area and keys of DG2000 series. You should also know how to set your function/arbitrary waveform generator. If you are not familiar with these operations, please read Chapter 1 "Getting Started" again.

This chapter covers the following topics:

( <mark>∽/ A</mark> ) Menu/Graph Mode (Sine) Setting Sine Signal (Square) Setting Square Signal (Ramp) Setting Ramp Signal (Pulse) Setting Pulse Signal (Noise) Setting Noise Signal (Arb) Setting Arb Signal (Digital) \* Settig Logic Signal Output (Mod) Output Modulated Signal **Output Sweep Signal** (Sweep) (Burst) Output Burst Signal (Trigger) Trigger Store/Recall (Store/Recall) (Utility) Utility Setting (Help) Help System

You are suggested to read this chapter carefully so as to understand DG2000 Series Generator's versatile waveform setting Functions and the other operation methods.

\*Note: For the operation instruction of Logic Signal Output, please refer to User's Guide of DG2000 Logic Signal Output Module.

## The Menu/Graph Mode

#### To activate the Graph Mode

Press A to enter the Graph Mode. The name of the current selection parameter is shown on the top left corner of the screen, and its value is shown in inverse color. See figure 2-1.

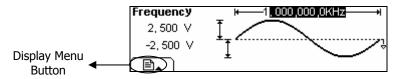



Figure 2-1 The Graph Mode Interface

#### To Select the Desired Parameter

To select the specific parameters, please press any menu button and the operation menu will pop out. Press the corresponding button to set the parameter. For example, if you want to change the frequency, press any menu button and select Freq menu. The direction button will help you find your desired parameter and change its value with the knob or the keypad, see figure 2-2. Under the Graph Mode, the parameters will still switch at a second press on the button, such as Amp/HiLev.

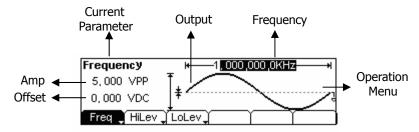



Figure 2-2 Setting the parameters in the Graph Mode

#### To Quit the Graph Mode

To guit the Graph Mode, press the  $\bigcirc$ / A again and return the Menu Mode.

### To Set Sine Signals

In the Menu Mode, press Sine button to call the Sine operation. The top left corner of the screen will show the name of the current waveform, see figure 2-3. The output Sine waveform parameters are set by using the Sine operation menu.

The parameters for Sine waveforms are: Frequency/ Period, Amplitude/ High Level, Offset/ Low Level. Different Sine Signals are generated by setting these parameters. As is shown in figure 2-4, select Freq in the operation menu and the frequency parameter will show in the parameter area. then Users can change the frequency value by using the direction button and the knob or the keypad.

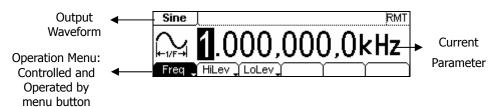



Figure 2-3 The Setting Interface of Sine Signal Parameter



Figure 2-4 The Operation Menu

Table 2-1 The Menu Explanations of Sine Signal

| Function<br>Menu         | Settings | Explanation                                                                                      |
|--------------------------|----------|--------------------------------------------------------------------------------------------------|
| Frequency/<br>Period     |          | Setting the signal frequency or period; the current parameter will switch at a second press.     |
| Amplitude/<br>High Level |          | Setting the signal Amplitude or High Level; the current parameter will switch at a second press. |
| Offset/Low<br>Level      |          | Setting the signal Offset or Low Level; the current parameter will switch at a second press      |

### To Set the Output Frequency/Period

- 1. Press Sine → Freq/Period → Freq , to set the frequency parameter. The frequency shown on the screen is the default value when the instrument is powered or the set value beforehand. When setting the function, if the current value is valid for the new waveform, it will be used sequentially. If you want to set the period for the waveform, press Freq/Period button again, switch to the Period parameter (The current operation is displayed in inverse color).
- 2. Input the Desired Frequency.

Use the keypad to input the parameter value directly, and press the corresponding button to select the parameter unit. Or you can use the direction button to select the digit you want to edit, and then use the knob to change its value.

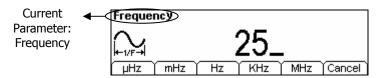



Figure 2-5 Setting the Frequency

#### Instruction:

When using the keypad to enter the digit, you can use the Left direction button to move the cursor backward and delete or change the value of the previous digit. When using the knob to input, use the direction buttons to select the digit you want to edit and rotate the knob to change its value.

### **To Set the Output Amplitude**

1. Press Sine → Ampl/HiLev → Ampl , to set the amplitude.

The amplitude shown on the screen is the default value when the instrument is powered or the set value beforehand. When changing the function, if the current value is valid for the new waveform, it will be used sequentially. If you want to set the waveform by high Level or Low Level, press Ampl/HiLev or Offset/Lolev again, switch to HiLev or LoLev parameter (The current operation is displayed in inverse color).

# Input the Desired Amplitude Use the keypad or the knob to input the desired value, choose the unit, and press the corresponding button.

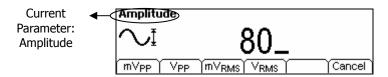



Figure 2-6 Setting the Amplitude

#### To Set the DC Offset

- Press Sine → Offset/LoLev → Offset , to set the offset.
   The offset shown on the screen is the default value when the instrument is powered or the set value beforehand. When changing the function, if the current value is valid for the new waveform, it will be used sequentially.
- Input the Desired Offset
   Use the keypad or the knob to input the desired value, choose the unit, and press
   the corresponding button.

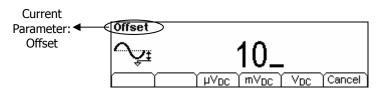



Figure 2-7 Setting the Offset

In the Graph Mode, the waveform is shown in figure 2-8.

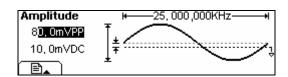



Figure 2-8 The Waveform Parameter in the Graph Mode

**Notes:** the Setting of any waveform for DC Offset is the same as sine wave, so we will not cover this topic hereon.

## **To Set Square Signals**

Press Square button, in the Normal Mode, the operation menu will appear at the bottom of the screen, see figure 2-9. Set the Square parameters by using the operation menu.

The parameters for Square waveforms are: Frequency/ Period, Amplitude/ High Level, Offset/ Low Level and Duty Cycle. See figure 2-10. In the operation menu, select Duty, and the corresponding parameter will be displayed in inverse color for which users can make a change.




Figure 2-9 The Setting Interface of Square Signal



Figure 2-10 The Operation Menu

Table 2-2 The Menu Explanations of Square Signal

| Function<br>Menu         | Settings | Explanation                                                                                      |
|--------------------------|----------|--------------------------------------------------------------------------------------------------|
| Frequency/<br>Period     |          | Setting the signal frequency or period; the current parameter will switch at a second press.     |
| Amplitude/<br>High Level |          | Setting the signal Amplitude or High Level; the current parameter will switch at a second press. |
| Offset/Low<br>Level      |          | Setting the signal Offset or Low Level; the current parameter will switch at a second press      |
| Duty Cycle               |          | Setting the Duty Cycle for Square Waveform                                                       |

### **Term Explanation:**

**Duty Cycle:** The percentage that the High Level takes up in the whole Period.

Please Note: for the Frequency
Below 8MHz:

20% to 80%
From 8MHz to 16MHz (included):

40% to 60%
Higher than 16MHz:

50%

### To Set the Duty Cycle

- Press Square → Duty , to set the Duty Cycle.
   The Duty Cycle shown on the screen is the default value when the instrument is powered or the set value beforehand. When changing the function, if the current value is valid for the new waveform, it will be used sequentially.
- 2. Input the Desired Duty Cycle
  Use the keypad or the knob to input the desired value, choose the unit, and press
  the corresponding button. The Generator will change the waveform immediately.

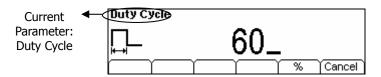



Figure 2-11 Setting the Duty Cycle

In the Graph Mode, the waveform is shown in figure 2-12.

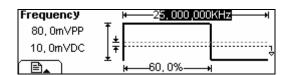



Figure 2-12 The Waveform Parameter in the Graph Mode

## **To Set Ramp Signals**

Press Ramp button, in the Normal Mode, the operation menu will appear at the bottom of the screen, see figure 2-13. Set the Ramp parameters by using the operation menu.

The parameters for Ramp waveforms are: Frequency/ Period, Amplitude/ High Level, Offset/ Low Level and Symmetry. See figure 2-14. In the operation menu, select Symm, and the corresponding parameter will be displayed in inverse color for which users can make a change.



Figure 2-13 The Setting Interface of Ramp Signal



Figure 2-14 The Operation Menu

Table 2-3 The Menu Explanations of Ramp Signal

| Function<br>Menu         | Settings | Explanation                                                                                      |
|--------------------------|----------|--------------------------------------------------------------------------------------------------|
| Frequency/<br>Period     |          | Setting the signal frequency or period; the current parameter will switch at a second press.     |
| Amplitude/<br>High Level |          | Setting the signal Amplitude or High Level; the current parameter will switch at a second press. |
| Offset/Low<br>Level      |          | Setting the signal Offset or Low Level; the current parameter will switch at a second press      |
| Symmetry                 |          | Setting the Symmetry for Ramp Waveform                                                           |

#### **Term Explanation:**

**Symmetry:** The percentage that the Rising Period takes up in the whole Period.

**Input Range:** 0~100%

## **To Set the Symmetry**

- Press Ramp → Symm , to set the Symmetry.
   The Symmetry shown on the screen is the default value when the instrument is powered or the set value beforehand. When changing the function, if the current value is valid for the new waveform, it will be used sequentially.
- 2. Input the Desired Symmetry.
  Use the keypad or the knob to input the desired value, choose the unit, and press the corresponding button. The Generator will change the waveform immediately.

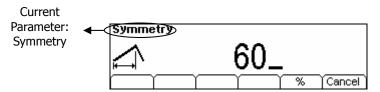



Figure 2-15 Setting the Symmetry

In the Graph Mode, the waveform is shown in figure 2-16.

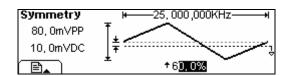



Figure 2-16 The Waveform Parameter in the Graph Mode

# **To Set Pulse Signals**

Press Pulse button, in the Normal Mode, the operation menu will appear at the bottom of the screen, see figure 2-17. Set the Pulse parameters by using the operation menu. The parameters for Pulse waveforms are: Frequency/ Period, Amplitude/ High Level, Offset/ Low Level, Pulse Width/Duty Cycle and Edge Time. See figure 2-18. In the operation menu, select Width, and the corresponding parameter will be displayed in inverse color for which users can make a change.



Figure 2-17 The Setting Interface of Pulse Signal



Figure 2-18 The Operation Menu

Table 2-4 The Menu Explanations of Pulse Signal

| Function<br>Menu         | Settings | Explanation                                                                                        |  |
|--------------------------|----------|----------------------------------------------------------------------------------------------------|--|
| Frequency/<br>Period     |          | Setting the signal frequency or period; the current parameter will switch at a second press.       |  |
| Amplitude/<br>High Level |          | Setting the signal Amplitude or High Level; the current parameter will switch at a second press.   |  |
| Offset/Low<br>Level      |          | Setting the signal Offset or Low Level; the current parameter will switch at a second press.       |  |
| Width/<br>Dty Cyc        |          | Setting the signal Pulse Width or Duty Cycle; the current parameter will switch at a second press. |  |
| Edge                     |          | Setting the Edge Time for Pulse Waveform.                                                          |  |

## Term Explanation:

## **Pulse Width:**

Positive Pulse Width: the time span between thresholds of 50% of the rising edge amplitude to the next 50% of the falling edge amplitude;

Negative Pulse Width: the time span between thresholds of 50% of the falling edge amplitude to the next 50% of the rising edge amplitude.

## **Edge Time:**

The time span between the thresholds of the 10% to 90% of the rising edge amplitude is called Rising Time.

The time span between the thresholds of the 10% to 90% of the falling edge amplitude is called Falling Time.

The Rising Time and the Falling Time together are called Edge Time.

## To Set the Pulse Width

- Press Pulse → Width , to set the Pulse Width.
   The Pulse Width shown on the screen is the default value when the instrument is
  - powered or the set value beforehand. When changing the function, if the current value is valid for the new waveform, it will be used sequentially.
- 2. Input the Desired Pulse Width

Use the keypad or the knob to input the desired value, choose the unit, and press the corresponding button. The Generator will change the waveform immediately.

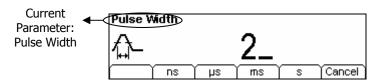



Figure 2-19 Setting the Pulse Width

## To Set the Edge Time

- Press Pulse → Edge , to set the Edge Time.
   The Edge Time shown on the screen is the default value when the instrument is powered or the set value beforehand. When changing the function, if the current value is valid for the new waveform, it will be used sequentially.
- 2. Input the desired Edge Time
  Use the keypad or the knob to input the desired value, choose the unit, and press
  the corresponding button. The Generator will change the waveform immediately.

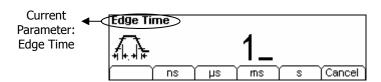



Figure 2-20 Setting the Edge Time

In the Graph Mode, the waveform is shown in figure 2-21.

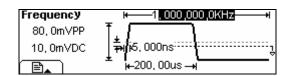



Figure 2-21 The Waveform Parameter in the Graph Mode

#### Instruction:

The system has the default setting that the Rising and Falling edge time are the same.

# **To Set Noise Signals**

Press Noise button, in the Normal Mode, the operation menu will appear at the bottom of the screen, see figure 2-22. Set the Pulse parameters by using the operation menu. The parameters for Noise waveforms are: Amplitude/ High Level and Offset/ Low Level. See figure 2-23. In the operation menu, select Ampl, and the corresponding amplitude will be displayed in inverse color for which users can make a change for the the amplitude of Noise. And Noise signal has no frequency or period.



Figure 2-22 The Setting Interface of Noise Signal



Figure 2-23 The Operation Menu

Table 2-5 The Menu Explanations of Noise Signal

| Function<br>Menu         | Settings | Explanation                                                                                      |
|--------------------------|----------|--------------------------------------------------------------------------------------------------|
| Amplitude/<br>High Level |          | Setting the signal Amplitude or High Level; the current parameter will switch at a second press. |
| Offset/Low<br>Level      |          | Setting the signal Offset or Low Level; the current parameter will switch at a second press.     |

In the Graph Mode, the waveform is shown in figure 2-24.



Figure 2-24 The Waveform Parameter in the Graph Mode

# **To Set Arbitrary Signals**

Press Arb button, in the Normal Mode, the operation menu will appear at the bottom of the screen, see figure 2-25. Set the Arbitrary Waveform parameters by using the operation menu.

Arbitrary Signals are divided into two categories: the built-in optional system waveforms and the user-defined arbitrary waveforms. The parameters for Arbitrary Waveforms are: Frequency/ Period, Amplitude/ High Level and Offset/ Low Level. See figure 2-26. In the operation menu, select Freq, and the corresponding frequency will be displayed in inverse color for which users can make a change.

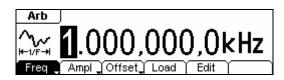



Figure 2-25 The Setting Interface of Arbitrary Signal



Figure 2-26 The Operation Menu

Table 2-6 The Menu Explanations of Arbitrary Signal

| Function<br>Menu         | Settings | Explanation                                                                                      |  |
|--------------------------|----------|--------------------------------------------------------------------------------------------------|--|
| Frequency/<br>Period     |          | Setting the signal frequency or period; the current parameter will switch at a second press.     |  |
| Amplitude/<br>High Level |          | Setting the signal Amplitude or High Level; the current parameter will switch at a second press. |  |
| Offset/Low<br>Level      |          | Setting the signal Offset or Low Level; the current parameter will switch at a second press.     |  |
| Load                     |          | Select the built-in Arbitrary Signal for Output.                                                 |  |
| Edit                     |          | Create and Edit Arbitrary Waveform.                                                              |  |

## To Select the built-in Arbitrary Waveform

There are five built-in Arbitrary Waveforms and user-defined Arbitrary Waveforms in the Generator. To select one of them, following the instructions below:

Press  $\overline{\text{Arb}} \rightarrow \overline{\text{Load}}$ , to enter into the interface shown below.



Figure 2-27 The Operation Menu

Table 2-7 The Selection Menu of Built-in Arbitrary Waveform

| Function<br>Menu | Settings | Explanation                                                                               |  |
|------------------|----------|-------------------------------------------------------------------------------------------|--|
| Built-in         |          | Select one of the five built-in Arbitrary Waveforms                                       |  |
| Duilt-III        |          | (See Table 2-8)                                                                           |  |
| Ctorod           |          | Select one of Arbitrary Waveforms stored in the                                           |  |
| Stored           |          | Non-volatile memory.                                                                      |  |
|                  |          | Select one of Arbitrary Waveforms stored in the                                           |  |
| Volatile         |          | Volatile memory. When a new waveform is                                                   |  |
|                  |          | created, the old one will be erased.                                                      |  |
|                  |          | Delete one of the Arbitrary Waveforms stored in                                           |  |
| Delete           |          | the Non-volatile memory. The five Built-in                                                |  |
|                  |          | Waveforms can not be deleted.                                                             |  |
| <b>-</b>         |          | Cancel the current operation, and return to the upper menu. (The followings are the same) |  |

## **Instructions:**

- When there is no waveform stored in the Non-Volatile Memory, the Stored Menu and the Delete Menu will hide.
- When there is no waveform in the Volatile Memory, the Volatile menu will hide.

## 1. To Select the Built-in Waveform

Press  $Arb \rightarrow Load \rightarrow BuiltIn$ , and enter into the following interface.



Figure 2-28 The Operation Menu

Table 2-8 The Built-in Arbitrary Waveforms Menu

| Function<br>Menu | Settings Explanation |                                                  |
|------------------|----------------------|--------------------------------------------------|
| ExpRise          |                      | Select the built-in Exponential Rise Waveform    |
| ExpFall          |                      | Select the built-in Exponential Fall Waveform    |
| NegRamp          |                      | Select the built-in Negative Ramp Waveform       |
| Sinc             |                      | Select the built-in Sinc Waveform. Sinc=Sin(x)/x |
| Cardiac          |                      | Select the built-in Cardiac Waveform             |

In the Graph Mode, the waveform is shown in figure 2-29.

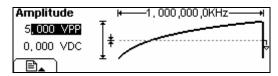



Figure 2-29

The Waveform Parameter in the Graph Mode (Exponential Rising Waveform)

## 2. To Select the Stored Waveform

Press  $Arb \rightarrow Load \rightarrow Stored$ , and enter the following interface. Select the desired waveform document which will be displayed in inverse color and press Recall to recall it from the memory.



Figure 2-30 The Operation Menu

Table 2-9 The Stored Arbitrary Waveform Menu

| Function<br>Menu | Settings                                | Explanation                                                                        |
|------------------|-----------------------------------------|------------------------------------------------------------------------------------|
|                  | Local                                   | Select display route for the                                                       |
| Disk             | U Disk<br>(When U Disk<br>is connected) | system information                                                                 |
|                  | State                                   | Setting of the Generator                                                           |
| Туре             | Data                                    | Arbitrary waveform file                                                            |
|                  | All                                     | All types of documentation                                                         |
| Recall           |                                         | Recall the waveform or Setting information in the specific position in the memory. |
| Store            |                                         | Save the waveform to the appointed place( See Table 2-24)                          |
| Remove           |                                         | Remove any waveform that                                                           |
|                  |                                         | has been stored in the memory                                                      |

#### **Instructions:**

When there is no waveform stored in the Arb1、Arb2、Arb3 and Arb4, this menu will hide (The followings is the same and will not explain again)

#### 3. To Remove the Waveform

Press  $Arb \rightarrow Load \rightarrow Store$ , and enter the following interface. Select the waveform documentation to be deleted which will be displayed in inverse color, and then press Remove to delete it.

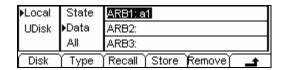



Figure 2-31 The Operation Menu

Table 2-10 The Menu Explanations of Waveform Removal

| Function<br>Menu | Settings                                | Explanation                                                                        |  |
|------------------|-----------------------------------------|------------------------------------------------------------------------------------|--|
|                  | Local                                   | Select display route for the                                                       |  |
| Disk             | U Disk<br>(When U disk<br>is connected) | system information                                                                 |  |
|                  | State                                   | Setting of the Generator                                                           |  |
| Type             | Data                                    | Arbitrary waveform file                                                            |  |
|                  | All                                     | All types of documentation                                                         |  |
| Recall           |                                         | Recall the waveform or Setting information in the specific position in the memory. |  |
| Store            |                                         | Save the waveform to the appointed position                                        |  |
| Remove           |                                         | Remove any waveform that                                                           |  |
| Keniove          |                                         | has been stored in the memory                                                      |  |

# **To Edit the Arbitrary Waveform**

The Generator allows users to edit Arbitrary Waveforms, which can create any new waveform by initializing points. The operation steps are as follows:

Press  $\overline{\text{Arb}} \rightarrow \overline{\text{Edit}}$ , enter the interface shown below.

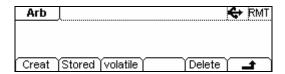



Figure 2-32 The Operation Menu

Table 2-11 The Menu Explanations of Waveform Edition

| Function<br>Menu | Settings | Explanation                                                                                                                        |  |
|------------------|----------|------------------------------------------------------------------------------------------------------------------------------------|--|
| Creat            |          | Create a new waveform, and erase the waveform in the Volatile memory.                                                              |  |
| Stored           |          | Edit the waveform stored in the non-Volatile memory                                                                                |  |
| Volatile         |          | Edit the waveform stored in the Volatile memory                                                                                    |  |
| Delete           |          | Delete one of the Arbitrary Waveforms stored in<br>the Non-volatile memory. But The five Built-in<br>Waveforms can not be deleted. |  |

## Instructions:

- When there is no waveform stored in the Non-Volatile Memory, the Stored Menu and the Delete Menu will hide.
- When there is no waveform in the Volatile Memory, the Volatile menu will hide.

#### 1. To Create a New Waveform

Press  $\overline{\text{Arb}} \rightarrow \overline{\text{Edit}} \rightarrow \overline{\text{Creat}}$ , to set the overall parameters for the waveform. The setting interface is shown in figure 2-33 and the menu in table 2-12.



Figure 2-33 The Interface of setting the new waveform parameters



Figure 2-34 The Operation Menu

Table 2-12 The Explanations of Waveform Parameters

| Function<br>Menu  | Settings | Explanation                                                                                                                 |  |
|-------------------|----------|-----------------------------------------------------------------------------------------------------------------------------|--|
| Period            |          | Setting the Period for the Waveform                                                                                         |  |
| LevelHi           |          | Setting the Level High for the Waveform                                                                                     |  |
| LevelLo           |          | Setting the Level Low for the Waveform                                                                                      |  |
| Interp On/<br>Off |          | Activate the linear Interpolation between the defined points Deactivate the linear Interpolation between the defined points |  |
| Points            |          | Set the number of points when Initializing the waveform                                                                     |  |
| EditPt            |          | Start the Waveform Editor                                                                                                   |  |

#### **To Set the Point Number**

Press Points, set the number of the initializing points.

When a new waveform is created, the waveform editor will firstly create a waveform with two points. The Waveform Editor connects the last point to the Voltage Level of point #1 to create a continuous waveform automatically. A waveform with most 512K points can be created.

In the default setting, the voltage of point #1 is High Level, the time is at 0 s, while the voltage of point #2 is Low Level and the time is the half of the set Cycle period.

## To Set the Interpolation

Press Interp, if you select Interp On, and the points will be connected with beelines; otherwise, the voltages between the two consecutive points will not change, and the waveform looks like a step-up one.

#### To Edit the Waveform Points

Press  $Arb \rightarrow Edit \rightarrow Creat \rightarrow EditPt$ , the waveform can be defined by setting the time and voltage for each point. The interface is given as follows:

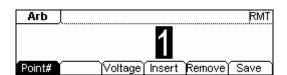



Figure 2-35 The Operation Menu

Table 2-13 The Menu Explanations of Waveform Edition

| Function<br>Menu | Settings | Explanation                                                                                          |
|------------------|----------|------------------------------------------------------------------------------------------------------|
| Point#           |          | Select the point to be edited                                                                        |
| Time             |          | Set time for the Selected point                                                                      |
| Voltage          |          | Set Voltage for the Selected point                                                                   |
| Insert           |          | Insert a new point between the defined points. Use the "Time" and "Voltage" to define the new point. |
| Remove           |          | Remove the current point                                                                             |
| Save             |          | Save the created waveform to the non-Volatile Memory.                                                |

## **Instruction:**

The time for the last definable point should be less than the cycle period of the waveform.

## **Save the Waveform to the Non-Volatile Memory**

Press  $Arb \rightarrow Edit \rightarrow Creat \rightarrow EditPt \rightarrow Save$ , enter the following interface. Select the desired waveform document to be saved, which will be displayed in inverse color and press Save to save it to the specific place.

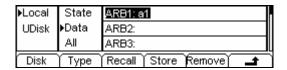



Figure 2-36 The Operation Menu

Table 2-14 The Menu Explanations of Saving New Waveform

| Function<br>Menu | Settings                       | Explanation                                                                        |
|------------------|--------------------------------|------------------------------------------------------------------------------------|
| Disk             | Local U Disk (When a U disk is | Select display path for the system information                                     |
|                  | connected) State               | Setting of the Generator                                                           |
| Туре             | Data                           | Arbitrary waveform file                                                            |
|                  | All                            | All types of documentation                                                         |
| Recall           |                                | Recall the waveform or Setting information in the specific position in the memory. |
| Store            |                                | Save the waveform to the appointed position                                        |
| Remove           |                                | Remove any waveform that has been stored in the memory                             |

#### Instruction

## To save the Arbitrary Waveform:

In the Non-volatile Memory, each waveform storage position can only save one waveform. If a new one is stored, the old one will be erased.

- For a waveform containing points below 128K, the current position will be used.
- For a waveform containing points from128K to 256K, two sequential position will be used.
- For a waveform containing points from 256K to 512K, All the 4 position will be used.

In the Graph Mode, the waveform is shown in figure 2-37.

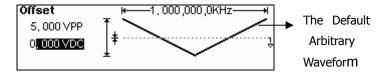



Figure 2-37 The Waveform Parameter in the Graph Mode

## 2. To Edit the Stored Waveform

Press  $Arb \rightarrow Edit \rightarrow Store$ , enter the following interface. Select the desired waveform document to be edited, which will be displayed in inverse color and press Recall to recall and edit it in the Volatile memory.

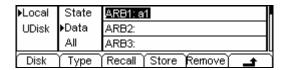



Figure 2-38 The Operation Menu

Table 2-15 The Menu Explanations of Editing Stored Waveform

| Function<br>Menu | Settings                       | Explanation                                                                        |
|------------------|--------------------------------|------------------------------------------------------------------------------------|
| Disk             | Local U Disk (When a U disk is | Select display path for the system information                                     |
|                  | connected ) State              | Satting of the Congretor                                                           |
| Туре             | Data                           | Setting of the Generator  Arbitrary waveform file                                  |
| Турс             | All                            | All types of documentation                                                         |
| Recall           |                                | Recall the waveform or Setting information in the specific position in the memory. |
| Store            |                                | Save the waveform to the appointed position.                                       |
| Remove           |                                | Remove any waveform that has been stored in the memory                             |

## 3. To Delete a Waveform

Press  $Arb \rightarrow Edit \rightarrow Delete$ , to delete a waveform. Select the desired waveform to be deleted which will be displayed in inverse color and press Remove to delete it.

## Instruction

The Ultrawave software can be used to edit the user-defined waveform, and you can download it from the official website <a href="https://www.rigolna.com">www.rigolna.com</a>.

## To Generate the Modulated Waveform

Use the Mod button to generate modulated waveform. DG2000 Series can generate AM, FM, FSK, PM or PWM modulated waveforms. The modulation parameters should be set in different types of modulation. For example, in AM, users can set the Source (Internal/ External), depth, Modulating Frequency, Modulating Waveform and Carrier Waveform; in FM, users can set the Source (Internal/ External), Frequency Deviation, Modulating Waveform and Carrier Waveform; in FSK, users can set the Source (Internal/ External), Hop Frequency, FSK Rate, Modulating Waveform and Carrier Waveform; while in PM, users can set the Source (Internal/ External), Phase Deviation, Modulating Frequency, Modulating Waveform and Carrier Waveform, etc.

We will explain how to set these parameters in details according to different types of Modulation.



Figure 2-39 The setting Interface of Modulated Waveform

## **AM**

The modulated waveform consists of two parts: the Carrier Waveform and the Modulating Waveform. In AM, the Amplitude of the Carrier Waveform varies with the instantaneous voltage of the modulating waveform. The Parameters for the AM are shown in table 2-16.

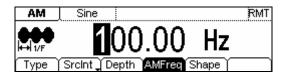



Figure 2-40 The Setting Interface of AM Waveform

Press  $\boxed{\mathsf{Mod}} \to \boxed{\mathsf{Type}} \to \boxed{\mathsf{AM}}$  , enter the following interface.



Figure 2-41 The Operation Menu

Table 2-16 The Menu Explanations of the AM Parameters

| Function<br>Menu | Settings                                                       | Explanation                                                                         |
|------------------|----------------------------------------------------------------|-------------------------------------------------------------------------------------|
| Туре             | AM                                                             | Amplitude Modulation                                                                |
|                  | Internal                                                       | The Source is Internal                                                              |
| SrcInt<br>SrcExt | External                                                       | The Source is External. Use the [Modulation In] connector in the Rear panel.        |
| Depth            |                                                                | Set the amplitude range                                                             |
| AMFreq           |                                                                | Set the modulating waveform frequency. Frequency Range: 2mHz~20kHz (Only Internal). |
| Waveform         | Sine<br>Square<br>Triangle<br>UpRamp<br>DnRamp<br>Noise<br>Arb | Press the function key Sine, Square etc to choose different Shape of waveform.      |

**Note:** When choose the external modulation, the menu Depth , AMFreq and Shape will hide.

In the Graph Mode, the waveform is shown in figure 2-42.



Figure 2-42 The Waveform Parameter in the Graph Mode

# **Term Explanation Modulation Depth**

The Amplitude Range (also called "Percentage Modulation"). Modulation Depth varies from 0% to 120%.

- In the 0% Modulation, the output amplitude is the half of the set one.
- In the 100% Modulation, the output amplitude is the same with the set one.
- For an external source, the depth of AM is controlled by the voltage level of the connector connected to the [Modulation In]. +5V corresponds to the currently set depth 100%.

## FΜ

The modulated waveform consists of two parts: the Carrier Waveform and the Modulating Waveform. In FM, the Frequency of the Carrier Waveform varies with the instantaneous voltage of the modulating waveform. The Parameters for the FM are shown in figure 2-43.

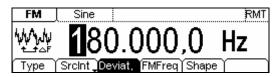



Figure 2-43 The Setting Interface of FM Waveform

Press  $Mod \rightarrow Type \rightarrow FM$ , enter the following interface.



Figure 2-44 The Operation Menu

Table 2-17 The Menu Explanations of the FM Parameters

| Function<br>Menu | Settings                                                       | Explanation                                                                           |
|------------------|----------------------------------------------------------------|---------------------------------------------------------------------------------------|
| Туре             | FM                                                             | Frequency Modulation                                                                  |
| SrcInt           | Internal                                                       | Choose the Internal source.                                                           |
| SrcExt           | external                                                       | Use the rear [Modulation In] linker to select the external source.                    |
| Deviat.          |                                                                | Set the Frequency Deviation between the Modulating Waveform and the Carrier Waveform. |
| FMFreq           |                                                                | Set the modulating waveform frequency. Frequency Range: 2mHz~20kHz (Only Internal).   |
| Shape            | Sine<br>Square<br>Triangle<br>UpRamp<br>DnRamp<br>Noise<br>Arb | Press the function key Sine, Square etc to choose different Shape of waveform.        |

**Note:** When choose the external modulation, the menu and Shape will hide.

In the Graph Mode, the waveform is shown in figure 2-45.

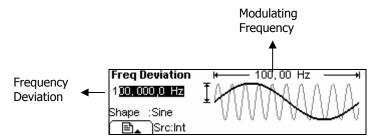



Figure 2-45 The Waveform Parameter in the Graph Mode

# **Term Explanation Frequency Deviation**

- The Deviation should be equal to or less than the Carrier Waveform Frequency.
- The Sum of the Deviation and the Carrier Frequency should be equal to or less than maximum frequency of the selected function plus 100 kHz.
- For an External Source, the Deviation is controlled by the ±5V voltage Level of the Connector connected to the [Modulation In]. +5V adds to the selected Deviation, lower external voltage generates less deviation, while negative voltage reduces the modulated signal frequency below the corresponding carrier's.

## **FSK**

The FSK Modulation is a modulation method, the output frequency shifts between the two pre-set frequencies (Carrier Waveform Frequency and the Hop Frequency). The Frequency for the Output Frequency to shift from the carrier waveform frequency to and from the Hop frequency is called the FSK rate. The frequency by which the output frequency shift from each other is determined by the Internal Frequency generator or the Signal Voltage Level offered by the [Ext Trig/FSk/Burst] connector in the rear panel:

- If you choose the Internal Modulation, the frequency at which the output frequency shifts between the carrier frequency and the Hop frequency is determined by the set FSK rate.
- If you choose External Modulation and overlook the FSK rate, the output frequency is determined by the Voltage Level of the [Ext Trig/FSk/Burst] connector on the rear panel. If the Voltage Level is low, then generate the carrier frequency; when the voltage level is High, generate the Hop frequency.



Figure 2-46 The Setting Interface of FSK Waveform

Press  $\boxed{\mathsf{Mod}} \to \boxed{\mathsf{Type}} \to \boxed{\mathsf{FSK}}$  , enter the following interface.



Figure 2-47 The Operation Menu

Table 2-18 The Menu Explanations of the FSK Parameters

| Function<br>Menu | Settings | Explanation                                                                                                                             |
|------------------|----------|-----------------------------------------------------------------------------------------------------------------------------------------|
| Туре             | FSK      | Frequency Shift Keying Modulation                                                                                                       |
|                  | Internal | Choose the Internal source.                                                                                                             |
| SrcInt<br>SrcExt | external | Use the rear [Ext Trig/FSk/Burst] connector to choose the external source.                                                              |
| HopFreq          |          | Set the Hop Frequency Range: 1µHz~40MHz.                                                                                                |
| FSK Rate         |          | Set the frequency at which the output frequency shifts between the carrier frequency and the Hop frequency (OnlyInternal): 2mHz~100kHz. |

**Note:** When choose the external modulation, the menu FSkRate will hide.

In the Graph Mode, the waveform is shown in figure 2-48.

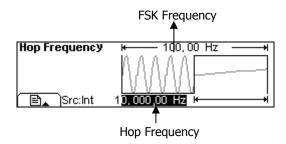



Figure 2-48 The Waveform Parameter in the Graph Mode

## **PM**

The modulated waveform consists of two parts: the Carrier Waveform and the Modulating Waveform. In PM, the Phase of the Carrier Waveform varies with the instantaneous voltage Level of the modulating waveform. The Parameters for the PM are as shown in figure 2-49.



Figure 2-49 The Setting Interface of PM Waveform

Press  $Mod \rightarrow Type \rightarrow PM$ , enter the following interface.



Figure 2-50 The Operation Menu

Table 2-19 The Menu Explanations of the PM Parameters

| Function<br>Menu | Settings                                                       | Explanation                                                                                               |
|------------------|----------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------|
| Туре             | PM                                                             | Phase Modulation                                                                                          |
|                  | Internal                                                       | Choose the Internal source.                                                                               |
| SrcInt<br>SrcExt | external                                                       | Use the rear [Modulation In] connector to choose the external source.                                     |
| Deviat.          |                                                                | Set the Phase Deviation between the Modulating Waveform and the Carrier Waveform, ranging from 0° to 360° |
| Freq             |                                                                | Set the modulating waveform frequency. Frequency Range: 2mHz~20kHz (Only Internal).                       |
| Shape            | Sine<br>Square<br>Triangle<br>UpRamp<br>DnRamp<br>Noise<br>Arb | Press the function key Sine, Square etc to choose different Shape of waveform.                            |

**Note:** When choose the external modulation, the menu PMFreq and Shape will hide.

In the Graph Mode, the waveform is shown in figure 2-51.

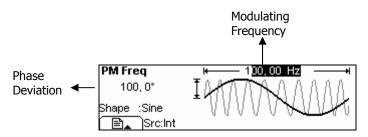



Figure 2-51 The Waveform Parameter in the Graph Mode

## **PWM**

The modulated wave is composed of the carried wave and the modulation wave. In the PWM ( Pulse-Width Modulation), the pulse width of the carried wave varies with the instantaneous voltage Level of the modulating waveform. The Parameters for the PWM are shown in figure 2-52.

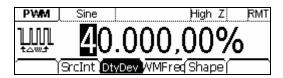



Figure 2-52 The Setting Interface of the PWM Waveform

The PWM function is only for modulating the Pulse wave. Once in the other wave interface, press Mod you may discover the softkey PWM can not be used while choosing the modulation type, it can enter the PWM interface only by pressing Mod Once in the Pulse interface.

Press Pulse and enter the PWM interface, then press Mod, enter the following menu.



Figure 2-53 The operation menu

| Function<br>Menu | Settings                                                       | Explanation                                                                          |
|------------------|----------------------------------------------------------------|--------------------------------------------------------------------------------------|
| Туре             | PWM                                                            | Pulse Width Modulation                                                               |
| SrcInt<br>SrcExt | Internal                                                       | Choose the Internal source.                                                          |
|                  | external                                                       | Use the rear [Modulation In] connector to choose the external source.                |
| DtyDev<br>WidDev |                                                                | Set the offset of the PWM.                                                           |
| PWMFreq          |                                                                | Set the frequency of the modulation wave with the range: 2mHz~20kHz (Only Internal). |
| Shape            | Sine<br>Square<br>Triangle<br>UpRamp<br>DnRamp<br>Noise<br>Arb | Press the function key Sine, Square etc to choose different Shape of waveform.       |

Table 2-20 The Menu Explanations of the PWM Parameters

**Note:** When choose the external modulation, the menu WMFreq and Shape will hide.

In the Graph Mode, the waveform is shown in figure 2-54.

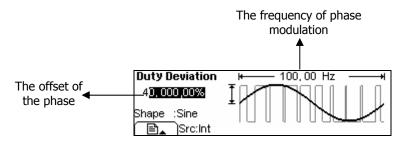



Figure 2-54 The Waveform Parameter in the Graph Mode

#### **Instructions:**

- The max range of DtyDev is the minimum in (duty, 1 duty);
- The max range of WidDev is the minimum in (width, period width).

# **To Generate Sweep**

In the frequency sweep mode, the function generator "sweep" from the start frequency to the stop frequency at the sweep rate you specify. Sweeping can be generated by Sine, Square, Ramp or Arbitrary Waveforms (Pulse, Noise and DC are not allowed).



Figure 2-55 The Setting Interface of Sweep Waveform

Press Sweep button, in the Normal Mode, the operation menu will appear on the bottom of the screen, see figure 2-56. Set the Waveform parameters by using the operation menu.



Figure 2-56 The Operation Menu

Table 2-21 The Menu Explanations of the Sweep Parameters

| Function<br>Menu | Settings | Explanation                                                                                                                                                                           |
|------------------|----------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Linear/<br>log   |          | Set the Sweep frequency with linear change<br>Set the Sweep frequency with logarithmic change                                                                                         |
| Start/<br>Center |          | Set the Start Frequency of the Sweep<br>Set the Center Frequency of the Sweep                                                                                                         |
| Stop<br>Span     |          | Set the Stop Frequency of the Sweep<br>Set the Frequency Span of the Sweep                                                                                                            |
| Time             |          | Set the Time Span of the Sweep for which the Frequency changes from the Start Frequency to Stop Frequency.                                                                            |
| Trigger          | Source   | Int: Choose Internal Source Ext: Choose External Source, use the [Ext Trig/FSk/Burst] connector in the rear panel Manual: Choose External Source, set the start and stop time by hand |
|                  | TrigOut  | : Signal Triggered at Rise Edge : Signal Triggered at Fall Edge Off: Turn off Trigger Setting                                                                                         |
|                  | 1        | Finish Setting                                                                                                                                                                        |

# **Sweep Frequency Setting**

Use Start and Stop or Center and Span to set the range of the frequency. Press the button again to switch to each other.

- To Sweep upward, set the Start Frequency lower than the Stop Frequency, or set a
  positive frequency interval.
- To Sweep downward, set the Start Frequency higher than the Stop Frequency, or set a negative frequency interval.

In the Graph Mode, the waveform is shown in figure 2-57.

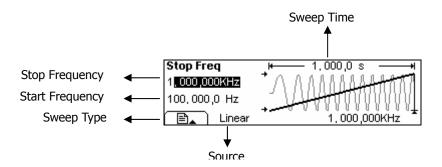



Figure 2-57 The Waveform Parameter in the Graph Mode

## **To Generate Burst**

Burst Function can generate versatile waveforms in burst, which can last specific times of waveform cycle(N-Cycle Burst), or when the external gated signals (Gated Burst) is applied, any waveform could be used. But noise can only be used in Gated Burst.

Press Burst button, in the Normal Mode, the operation menu will appear on the bottom of the screen, see figure 2-58. Set the Waveform parameters by using the operation menu.

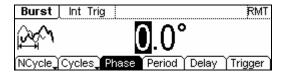



Figure 2-58 The Setting Interface of Burst Waveform

# **Set the N-Cycle Burst**

Press  $\overline{\text{Burst}} \rightarrow \overline{\text{NCycle}}$  , enter the following menu.



Figure 2-59 The Operation Menu

Table 2-22 The Menu Explanations of N-Cycle Burst

| Function<br>Menu    | Settings | Explanation                                                                                                                                                                           |
|---------------------|----------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| N-Cycle             |          | Set the N-Cycle Mode                                                                                                                                                                  |
| Cycles/<br>Infinite |          | Set the Number of the bursts in a N-Cycle<br>Set the Number of the bursts in a N-Cycle<br>to be infinite                                                                              |
| Phase               |          | Set the Start Phase of the Burst                                                                                                                                                      |
| Period              |          | Set the Period of the Burst                                                                                                                                                           |
| Delay               |          | Set the Delay of the burst                                                                                                                                                            |
| Trigger             | Source   | Int: Choose Internal Source Ext: Choose External Source, use the [Ext Trig/FSk/Burst] connector in the rear panel Manual: Choose External Source, set the start and stop time by hand |
|                     | TrigOut  | : Signal Triggered at Rising Edge : Signal Triggered at Falling Edge Off: Turn off Trigger Setting                                                                                    |
|                     | <b>±</b> | Finish Setting                                                                                                                                                                        |

#### N-Cycle/ Gated

N-Cycle has specific number of waveform cycles, and every burst is activated by a trigger event. Gated burst controls burst by external source.

#### **Cycle Number**

Set the number of Waveform Cycle in an N-Cycle (1 to 1,000,000 or Infinite). If you choose Infinite, then a continuous waveform will be generate which will not stop until a trigger event happens (Trigger button is pressed).

- If needed, Burst Period will increase to cater to the specific number of cycles.
- For a frequency greater than 25MHz, only a bust with infinite cycles is allowed.
- For an infinite-cycle Burst, External or Manual Trigger is needed to activate burst.

#### **Phase**

Define the Start and the Stop Point in a waveform. The phase varies from -360° to +360°, and the default setting is 0°. For an Arbitrary Waveform, 0° is the phase of the first waveform point.

#### **Period**

Set the time span between an N-Cycle Burst and the next. If necessary the period will increase to reach the specific number of cycles in a burst.

Burst Period > Period X Burst Number

#### **Delay**

Set the Time Delay between the Trigger Input and the Start of the N-Cycle Burst. The minimum delay is a function of the specific burst period, and should always be greater than 0.

In the Graph Mode, the waveform is shown in figure 2-60.

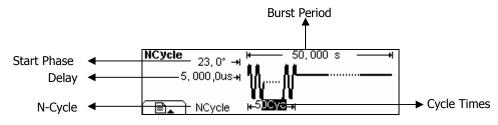



Figure 2-60 The Waveform Parameter in the Graph Mode

# **Set the Gated Burst**

Press Burst → Gated , enter the following menu.



Figure 2-61 The Operation Menu

Table 2-23 The Menu Explanations of Gated Burst

| Function<br>Menu | Settings   | Explanation                             |
|------------------|------------|-----------------------------------------|
| Gated            |            | Set the Gated Mode                      |
| Polarity         | Pos<br>Neg | Set the Polarity of the Gated Signal    |
| Phase            |            | Set the Start Phase of the Gated Signal |

In the Graph Mode, the waveform is shown in figure 2-62.

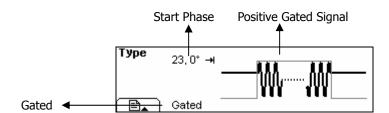



Figure 2-62 The Waveform Parameter in the Graph Mode

# To Store and Recall

Press Store/Recall button, and the operation menu will appear at the bottom of the screen. You can save or read the State or Data Documentation in the Generator or build and delete documentation in the U Disk. File names can either be Chinese or English.



Figure 2-63 The Save and Read Interface

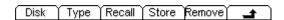



Figure 2-64 The Operation Menu

Table 2-24 The Menu Explanations of Store and Recall

| Function<br>Menu | Settings                                | Explanation                                                                        |
|------------------|-----------------------------------------|------------------------------------------------------------------------------------|
|                  | Local                                   | Choose display route for the                                                       |
| Disk             | U Disk<br>(When U Disk is<br>connected) | system information                                                                 |
|                  | State                                   | Setting of the Generator                                                           |
| Type             | Data                                    | Arbitrary waveform file                                                            |
|                  | All                                     | All types of documentation                                                         |
| Recall           |                                         | Recall the waveform or Setting information in the specific position in the memory. |
| Store            |                                         | Save the waveform to the appointed position.                                       |
| Remove           |                                         | Remove any waveform that                                                           |
|                  |                                         | has been stored in the memory                                                      |

#### **About the Disk**

Use the Disk button to choose Local or U Disk (When U Disk is connected).

# To Save the Instrument State

Users are allowed to store the instrument state in any one of the 4 Non-Volatile Memories. When the power is on again, the instrument will return to the state before it was powered off. The state storage will "memorize" the selected function (including the Arbitrary Waveform), Frequency, Amplitude, DC Offset, Duty Cycle, Symmetry, and other modulation parameters used.

To Save the Instrument State, following the steps:

- Choose the file Type to store
   Press Store/Recall → State , and set the storage type as "State".
- 2. Choose the location of the file.

  There are four positions in the local STATE1, STATE2, STATE3 and STATE4, and you can choose one of them by rotating the knob.
- 3. Name the file and Save it

  Press Store button, enter the self-defined name. Press Store to finish.

# **To Save Data**

Users are allowed to store data document in any of the 4 Non-Volatile Memories. If the position is already occupied, the new document will cover the old one. To save the data, following the steps:

- Set the file Type to store
   Press Store/Recall → State → data , and choose "data" as the storage type.
- 2. Choose the location of the file.

  There are four positions in the local ARB1, ARB2, ARB3 and ARB4, and you can choose one of them by rotating the knob.
- 3. Name the file and Save it

  Press Store button, enter the self-defined name. Press Store to finish.

# The interconnection of DG2000 and DS1000

We have introduced the interfaces of DG2000 to you before, and mentioned the USB Host Interface. And now, we will introduce how to use this interface to connect DG2000 with DS1000 (oscilloscope) to realize the nondestructive data Transmission.

- 1. Connect DG2000 with DS1000 to sample data;
- 2. Connect the USB Host Interface of DG2000 with the USB Device Interface of DS1000. View the waveform in DS1000, following the steps below:

#### **View the Acquired Waveform**

Press Store/Recall button, enter the following menu.



Figure 2-65 The operation menu

Rotate the knob, choose CH2: ON



Figure 2-66 Choose the channal

The pre-setting for data reading is finished, and we are going to view the waveform DS1000 acquired.

Press Read , and DG2000 will store the waveform that DS1000 acquired in the Volatile Memory.

## To export the waveform acquired

Press Arb  $\rightarrow$  Load  $\rightarrow$  Volatile, to load the waveform just read.



Figure 2-67 The operation menu

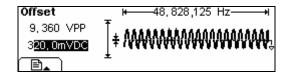



Figure 2-68 Load the waveform

**Notes:** The frequency shown in DG2000 may be different greatly from that you imagine. This is because that DG2000 considers the acquired 512K points as a period. If you want to get the real period of the generated waveform, you have to multiple the frequency value shown on DG2000 with the number of the real period in this false period.

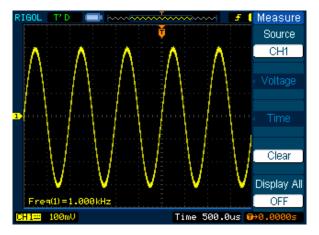



Figure 2-69 The Waveform Display in DS1000

As shown in the figure above, this is the waveform shown on another DS1000 by the above operation. Please note that the frequency shown on this instrument is the same as the expected one.

# To Use USB storage

As shown in figure 2-70, the storage location is divided into: the inherent storage (Local) and the U Disk storage(U Disk). At the left side of the front panel, there is a USB interface. When a USB storage is connected, the storage menu will show "U Disk". The default location is the local storage.



Figure 2-70 The Interface of USB Storage

- Install the Mobile Storage
   Insert the mobile memory to the USB interface on the front panel, and the screen will show "\(\mathbb{C}"\).
- 2. Choose the Mobile Memory
  Press Disk, move the cursor upward or downward to select "U Disk". Choose
  Type to be "data" and press Store, enter the file name and then press
  Store to save the file.
- 3. Uninstall the Mobile Storage
  Remove the U Disk from the Interface and the system will inform you that the U
  Disk has been removed, and the "U Disk" Sign will disappear.

**Note:** DG2000 supports the flash U disk in the format of FAT (less than 1G) and FAT32 (less than 2G).

# To Save a File

Press  $\overline{\text{Store}/\text{Recall}} \rightarrow \overline{\text{Store}}$ , enter the following interface. Enter the self-defined file name in the "File Name" frame. Below the frame is the input keypad. Use the direction button to select the desired character. When the character is in inverse color, press Select to input it.



Figure 2-71 The File Storage Interface



Figure 2-72 The Operation Menu

Table 2-25 The Menu Explanations of File Storage

| Function<br>Menu | Settings | Explanation                          |
|------------------|----------|--------------------------------------|
| Lang             | EN       | English Input                        |
| Lang             | CN       | Chinese Input                        |
| Select           |          | Select the current character         |
| Remove           |          | Delete the current character         |
| Store            |          | Store the file with the current name |
| <b>_</b>         |          | Cancel the current operation         |

### 1. English Input

The English Input Interface is shown in figure 2-73, to save a file named as "NewFile", following the steps below:



Figure 2-73 The English Input Interface

- (1) Press Lang → EN , enter the English Interface;
- (2) Input the file name" NewFile".

  Use the Knob to adjust the cursor to the right character, and press Select.

  Repeat this until you have selected all the characters needed. Press +/- to choose the majuscule or lowercase.
- (3) Edit the File Name
  When you have entered a wrong character, move the cursor to the wrong character and press Remove to delete it. And then reenter the file name.
- (4) Press Store , to finish and save the file.

### 2. Chinese Input

The Chinese Input Interface is shown in figure 2-74. To save a new file, follow the steps below:



Figure 2-74 The Chinese Input Interface

- (1) Press Lang → CN, enter the Chinese Input Interface.
- (2) Press " +/- "to choose the lowercase, and input the spell of the Chinese.
- (3) Input the file name: "新文件"
  Use the Knob to adjust the cursor to the right character, and press Select, input "Xin". In the Input Menu, choose the Chinese character you need with the help of the page controller and the 1~9 button on the keypad.
- (4) Edit the wrongly input
  When a file name is wrong, move the cursor to the character and press
  Remove to delete it and reenter the file name.
- (5) Press Store to finish and save the file.

**Notes:** The length of file name user can edit is up to 25 characters or 11 Chinese characters (The file can be stored in U-disk or non- volatile memories, but the length of file name has the limit). The length limit in non-volatile memories is 12 characters or 6 Chinese characters; the limit in U-disk is 39 characters or 19 Chinese characters. If surpass the length limit, N/A is shown.

# To Set the Utility Function

With the Utility function, you can set the parameters of the Generator such as: DC On/Off, Sync On/Off, Output Parameter, Interface Parameter, System Setting and Testing Parameter. The DC switch offers the options of DC output or Arbitrary Waveform Output. Sync Switch offers the option to choose the Sync Signal or not. The Output setting provides the parameter setting for Load/Impedance, Range, Normal/Inverse and Phase. The Interface Setting offers the storage and load of the configure parameter setting for GPIB (IEEE-488), LAN, RS232 or USB remote control. The System Setting provides the setting for Language, Display, Beep, Screen Guard, Format, Power System Configure and default setting. The test setting provides the self-testing and calibration storage as well as the password and safety switch.

Press Utility to enter the Utility Menu. Its functions are listed below in table 2-26.

DC Off\_Syncoff Output | I/O | System Test/Cal)

Figure 2-75 The Operation Menu

Table 2-26 The Menu Expanations of Utility System Setting

| Function<br>Menu | Settings | Explanation                                                            |
|------------------|----------|------------------------------------------------------------------------|
| DC On/           | On       | Set the output waveform as DC                                          |
| Off              | Off      | Set the output waveform as Arbitrary.                                  |
| Sync On/         | On       | Activate the Sync Signal of the [Sync] Connector on the front panel.   |
| Off              | Off      | Deactivate the Sync Signal of the [Sync] Connector on the front panel. |
| Output           |          | Set the Output parameter (Table 2-27)                                  |
| I/O              |          | Set the I/O (Table 2-28)                                               |
| System           |          | Set the System Configuration (Table 2-33)                              |
| Test/Cal         |          | Test and Calibrate the instrument (Table 2-37)                         |

### Instruction

# **Sync Switch Setting:**

When the amplitude is low relatively, you can reduce the distortion of the output signal by prohibiting the Sync Signal. And the current storage is in the Non-Volatile Memory.

# To Set the DC Output

Press  $|Utility| \rightarrow |DC|On/Off| \rightarrow |DC|On|$ , enter the following interface.



Figure 2-76 The DC Setting Interface

#### **DC Offset**

Set the DC Voltage Level.

## To Shift into the Arbitrary Waveform Output

- (1) Press  $\boxed{\text{Utility}} \rightarrow \boxed{\text{DC On/Off}} \rightarrow \boxed{\text{DC Off}}$ , close the DC output and return the output of the Arbitrary Waveform.
- (2) Press any functional button, and the waveform output setting turns to the output of arbitrary waveform. The DC option is turned off automatically.

In the Graph Mode, the waveform is shown in figure 2-77.

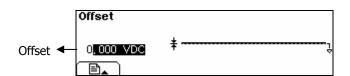



Figure 2-77 Waveform Parameter in the Graph Mode

# To Set the Sync Output

The Generator provides Sync output through the [Sync] Connector on the Front Panel. All the standard output functions (except DC and Noise) have a corresponding Sync Signal. For some Sync applications, they can be prohibited if users do not want to use them.

- In the default setting, the Sync Signal should be connected to the [Sync] Connector (activated). When the Sync Signal is prohibited, the output voltage Level of the [Sync] Connector is Low.
- In the Inverse Mode, the Sync Signal does not Inverse.
- For Sine, Square, Ramp and Pulse Signal, the Sync Signal is a Square Signal with 50% Duty Cycle. When the output is positive, the Sync Signal is TTL High Level compared to 0 V Voltage or DC Offset; when the output is negative, The Sync Signal is TTL Low Level compared to 0 V Voltage or DC Offset.
- For Arbitrary Waveform, the Sync Signal is a Square Waveform with 50% Duty Cycle. At the time when the first output waveform point is generated, the Sync Signal Voltage is TTL High Level.
- For AM, FM and PM in Internal Modulation, the Sync Signal reference is the Modulated Signal (not the Carrier Signal). The Sync Signal is a Square Waveform with 50% Duty Cycle. In the first half modulation period, the Sync Signal is TTL High Level. For External Modulation, the Sync Signal reference is the Carrier Signal (not the Modulated Signal). The Sync Signal is also a Square Waveform with 50% Duty Cycle.
- For FSK, the Sync Signal Reference is the Hop Frequency, and the Sync Signal is a Square Waveform with 50% Duty Cycle. For the Hop Frequency, at the hopping point, the Sync Signal is TTL High Level.
- For the Burst, when the burst starts, the Sync Signal is High Level. At the specific point when the Cycle Number ends, the Sync Signal turns Low Level (If the Waveform has a relative starting phase, it may be not zero intersections). For an infinite burst, the Sync Signal is the same as the Sync Signal of the continuous Signal.

For the External Gated Burst, the Sync Signal follows the External Gated Signal.
 But, please note that this signal will not turn Level Low until the last period end (If the Waveform has a relative starting phase, it may be not zero intersections).

# **To Set Output Parameter**

Press  $\overline{\text{Utility}} \rightarrow \overline{\text{Output}}$  , enter the following menu.



Figure 2-78 The Operation Menu

Table 2-27 The Menu Explanations of Output Setting

| Function<br>Menu  | Settings | Explanation                                                                                               |
|-------------------|----------|-----------------------------------------------------------------------------------------------------------|
| Load<br>High Z    |          | Set the Load connected to the Output Connector. Set the Load connected to the Output Connector as High Z. |
| Range             |          | Allow the Instrument to choose the best Amplifier/ Attenuator                                             |
| Normal<br>Inverse |          | Waveform Normal Output<br>Waveform Inverse Output                                                         |
| Phase             |          | Set the Phase Offset of the Output<br>Waveform                                                            |

#### 1. To Set the Output Load

For the [Output] Connector on the Front panel, the Generator has a built-in  $50\Omega$  series output impedance. If the actual load does not match the set one, the amplitude and offset displayed are incorrect. This function is used to match the displayed voltage with the expected one.

Steps for setting the Load value:

- (1) Press Utility → Output → Load, enter the following interface. Please note that the Load Parameter shown on the right bottom is the default when the power is on or the pre-set load value. If the current value is valid for the output, then the current value can be used.
- (2) Input the desired Load Value. Use the Keypad or the Knob to enter the desired value and choose the unit:  $\Omega$  or  $K\Omega$ , press the corresponding button.

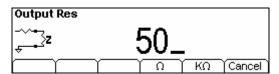



Figure 2-79 Set the Output Load

#### Instruction

DG2000 Series have a fixed  $50\Omega$  Series impedance no matter what the value has set for this parameter.

If the real load is different from the set one, the displayed voltage will not equal with the real voltage.

#### 2. To Set the Inverse Waveform

Press  $\boxed{\text{Utility}} \rightarrow \boxed{\text{Output}} \rightarrow \boxed{\text{Inverse}}$ , to set the inverse Waveform output.

No offset voltage will change while the waveform is inversed. An inversed waveform will be displayed in the Graph Mode.

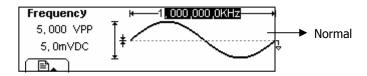



Figure 2-80 The Normal Waveform

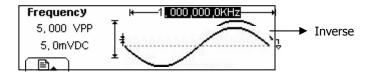



Figure 2-81 The Inverse Waveform

### 3. To Adjust the Phase

Press Utility → Output → Phase, enter the following interface.

Set the Phase with the unit of degree.

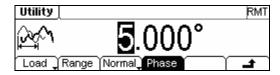



Figure 2-82 Set the Phase

# To Set the I/O

Press  $\overline{\text{Utility}} \rightarrow \overline{\text{I/O}}$ , to set the I/O. See figure 2-83.

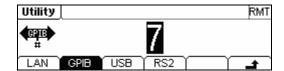



Figure 2-83 The Setting Interface of the I/O

Table 2-28 The Menu Explanations of Setting I/O

| Function<br>Menu | Settings | Explanation                         |
|------------------|----------|-------------------------------------|
| LAN              |          | Set the LAN configuration parameter |
| GPIB             |          | Set the GPIB Address                |
| USB              |          | See USB equipment address           |
| RS232            |          | Set the RS232 Interface             |

Set the GPIB address as any value within 0  $\sim$  30. The default setting is "7". The Address is stored in the Non-Volatile Memory, and will show when the power is on. The I/O Setting offers the Storage and Load of the configuration parameter setting of the GPIB (IEEE-488) , RS232 or LAN which are used for remote control.

#### 1. To Set LAN

You can configure the IP Address, the DNS setting or check the current network configuration by setting the LAN interface.

Press  $\overline{\text{Utility}} \rightarrow \overline{\text{I/O}} \rightarrow \overline{\text{LAN}}$ , enter the following interface.



Figure 2-84 The Operation Menu

Table 2-29 The Menu Explanations of LAN Setting

| Function<br>Menu | Settings | Explanation                                    |
|------------------|----------|------------------------------------------------|
| IP<br>setup      |          | Set the corresponding parameter for IP         |
| DNS              |          | Set the corresponding parameter for DNS        |
| Info             |          | The current setting information about the host |

### **IP Setup**

Press  $\boxed{\text{Utility}} 
ightarrow \boxed{\text{I/O}} 
ightarrow \boxed{\text{LAN}} 
ightarrow \boxed{\text{IPSetup}}$ , enter the following interface.



Figure 2-85 The Interface of IP Setup

Table 2-30 The Menu Explanations of IP Setup

| Function<br>Menu | Settings | Explanation                                             |
|------------------|----------|---------------------------------------------------------|
| DHCP             | On       | Open the DHCP setting, allot the IP address dynamically |
| On/Off           | Off      | Close the DHCP setting, set the IP address manually     |
| IP<br>addr       |          | Set the IP address                                      |
| IP Mask          |          | Set the IP Mask                                         |
| Gate Way         |          | Set the Gate Way                                        |

# Instruction

# **Open the DHCP:**

Press DHCPon , allot the IP address dynamically. At this time, the IPAddr , IPmask and Gate way menu will hide.

#### **DNS**

Press  $|Utility| \rightarrow I/O \rightarrow LAN \rightarrow DNS$ , enter the following interface.



Figure 2-86 The Setting Interface of DNS

Table 2-31 The Menu Explanations of Setting DNS

| Function<br>Menu | Settings | Explanation            |
|------------------|----------|------------------------|
| Host             |          | Set the Host Name      |
| Domain           |          | Set the Domain         |
| Server           |          | Set the Server Address |

#### **Host Name**

Set the Host Name, it consists of letter, number and dash ("-"). Consult with your network administrator for the Host name you need. Use the knob and the direction button to select the character to set the host name (you can only use the keypad to enter the number). The Host name will be stored in the Non-Volatile Memory.

#### **Domain Name**

Set the Domain Name with letter, number, dash ("-") and dot ("."). Consult with your network administrator for the Domain name you need. Use the knob and direction button to select the character to set the domain name (you can only use the keypad to enter the number and dot). The Domain name will be stored in the Non-Volatile Memory.

#### Info

Press  $\boxed{\text{Utility}} \rightarrow \boxed{\text{I/O}} \rightarrow \boxed{\text{LAN}} \rightarrow \boxed{\text{Info}}$ , the current system information is shown below.

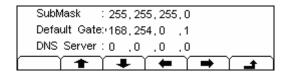



Figure 2-87 The System Information

#### Instruction

If the DHCP is enabled and you want to use the DNS address that the DHCP Server returns, please set the Server to be "0.0.0.0".

#### 2. To Set GPIB

The range of the GPIB interface address is  $0\sim30$ , and the default value is "7".

Press  $\overline{\text{Utility}} \rightarrow \overline{\text{I/O}} \rightarrow \overline{\text{GPIB}}$ , enter the interface below.



Figure 2-88 The Interface of Setting the GPIB

### 3. To Set RS232

Make sure that the Baud Rate and the Parity match the computer. Besides, make sure that the RS232 cable is connected correctly. The I/O setting is stored in the Non-Volatile Memory, and will show when the power is on.

Press  $Utility \rightarrow I/O \rightarrow RS232$ , enter the following interface.




Figure 2-89 The Setting Interface of Setting RS232

Table 2-32 The Menu Explanations of Setting RS232

| Function<br>Menu | Settings | Explanation                             |
|------------------|----------|-----------------------------------------|
| Baud             |          | Set the RS232 Baud Rate                 |
| Parity           |          | Set the RS232 Parity and the data digit |

#### **Baud Rate**

Set the RS232 Baud Rate. Make sure that the Baud Rate matches the computer. The optional rates are: 115k, 57.6k, 38.4k, 19.2k, 9600, 4800, 2400, 1200. The default setting is 9600. The current setting is stored in the Non-Volatile Memory.

#### **Parity**

Set the Parity and the data digit of RS232. Make sure that the parity matches the computer. The optional settings are: Odd, Even and No Parity. The default setting is "No Parity". The current setting is stored in the Non-Volatile Memory.

# To Set the System

Press  $\overline{\text{Utility}} \rightarrow \overline{\text{System}}$ , enter the following interface.



Figure 2-90 The Operation Menu

Table 2-33 The Menu Explanations of System Setting

| Function<br>Menu | Settings | Explanation                                                                                                                                                      |
|------------------|----------|------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Lang             |          | Set the System Language                                                                                                                                          |
| Display          |          | Set the parameter for the Screen Display                                                                                                                         |
| Веер             | On       | Open Beeper                                                                                                                                                      |
| On/Off           | Off      | Close Beeper                                                                                                                                                     |
| Svr on/off       | On       | Activate the Screen Guard function. Screen Guard will be on if no action is taken within 3 minutes. Press any button to return the display screen.               |
|                  | Off      | deactivate the Screen Guard function                                                                                                                             |
| Format           |          | Set the data format                                                                                                                                              |
| Setting          | PowOn    | PowOn: When the power is on, all the setting will return to the default value.  Latest: When the power is on, all the setting will return to the latest setting. |
|                  | Default  | Return all the setting into the default                                                                                                                          |
|                  | Timer    | Choose the clock source as internal/external                                                                                                                     |

# Key points: Power On

The Setting is used when the instrument is powering on.

Two choices are available: the default setting and the latest. Once selected, the setting will be used when the instrument restarts.

### **Beep**

Activate or deactivate the sound when an error occurs from the front panel operation or the remote interface operation. Activate or deactivate any sound made by the button or knob on the front panel.

### 1. Language Setting

The DG2000 Series Generator supports two languages: Chinese and English. To Select Language, press Utility and then Lang to select the language.

Press Utility → System → Lang, change the current language.



Figure 2-91 The Interface of Language Setting

# 2. Display Control

Press  $|Utility| \rightarrow System \rightarrow Display$ , enter the following interface.

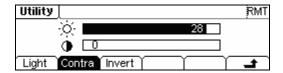



Figure 2-92 The Interface of Display Setting

Table 2-34 The Menu Explanations of Display Setting

| Function<br>Menu | Settings | Explanation                        |
|------------------|----------|------------------------------------|
| Contra           |          | Set the Display Contrast Parameter |
| Light            |          | Set the Display Light Parameter    |
| Invert           |          | Set the Invert Display             |

#### 3. Set the Format

Press  $\boxed{\text{Utility}} \rightarrow \boxed{\text{System}} \rightarrow \boxed{\text{Format}}$ , enter the following interface.

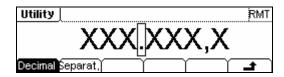



Figure 2-93 The Interface of Data Format Setting

Table 2-35 The Menu Explanations of Data Format Setting

| Function<br>Menu | Settings | Explanation                   |
|------------------|----------|-------------------------------|
| Decimal          | •        | Using dot as decimal          |
| Decimal          | ,        | Using comma as decimal        |
|                  | No       | Close the Separate.           |
| Separat.         | Space    | Use Space as separator        |
|                  | On       | Enable the Separator function |

According to the different choice of the decimal and the separator, the format can have various forms:

(1) Set  $\bullet$  as decimal, press Separat.  $\rightarrow$  On , the example is given as follows:

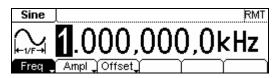



Figure 2-94 Set the data format

(2) Set  ${}^{\bullet}$  as decimal, press Separat.  $\rightarrow$  On , the example is given as follows:

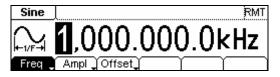



Figure 2-95 Set the data format

(3) Set  $\bullet$  as decimal, press Separat.  $\rightarrow$  No , the example is given as follows:

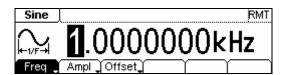



Figure 2-96 Set the data format

(4) Set  $\ref{fig:1}$  as decimal, press Separat. ightarrow No , the example is given as follows:



Figure 2-97 Set the data foramt

(5) Set  $\bullet$  as decimal, press Separat.  $\rightarrow$  Space , the example is given as follows:

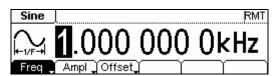



Figure 2-98 Set the data format

(6) Set **?** as decimal, press Separat. → Space , the example is given as follows:



Figure 2-99 Set the data format

# 4. To Return to Default Setting

Press  $\boxed{\text{Utility}} o \ \text{System} \ o \ \ \text{Setting} \ o \ \ \text{Default}$  , return the default setting of the system:

Table 2-36 The Factoruy Default

| Output           | Default                              |
|------------------|--------------------------------------|
| Function         | Sine Wave                            |
| Frequency        | 1kHz                                 |
| Amplitude/Offset | 5 V <sub>pp</sub> /0 V <sub>dc</sub> |
| Terminals        | High Z                               |

| Modulation        | Default         |
|-------------------|-----------------|
| Carrier           | 1kHz Sine Wave  |
| Modulating        | 100Hz Sine Wave |
| AM Depth          | 100%            |
| FM Deviation      | 100Hz           |
| FSK Hop Frequency | 10Hz            |
| FSK Frequency     | 100Hz           |

| Sweep                | Default    |
|----------------------|------------|
| Start/Stop Frequency | 100Hz/1kHz |
| Time                 | 1s         |
| Mode                 | Linear     |

| Burst     | Default |
|-----------|---------|
| Frequency | 1kHz    |
| Count     | 1Cycyle |
| Period    | 10ms    |
| Phase     | 0°      |

| System                | Default     |
|-----------------------|-------------|
| *Power-down Recall    | *Disabled   |
| Display               | On          |
| Error Array           | Clear Error |
| Storage State and any | No change   |

| Trigger | Default  |
|---------|----------|
| Source  | Internal |

| Remote I/O Configuration | Default          |
|--------------------------|------------------|
| *GPIB Address            | *7               |
| *I/O                     | *GPIB (IEEE-488) |
| *Baud Rate               | *9600 Baud       |
| *Parity                  | *No (8 bits)     |

The parameter with an asterisk (\*) is stored in the Non-Volatile Memory.

# **Test**

Press Utility → Test/Cal , enter the following interface.



Figure 2-100 The Interface of Setting Test



Figure 2-101 The Operation Menu

Table 2-37 The Menu Explanations of Setting Test

| Function<br>Menu | Settings | Explanation                                                      |  |
|------------------|----------|------------------------------------------------------------------|--|
| Test             |          | Perform System Self-Test                                         |  |
| Info             |          | See the information for Calibration times and other related ones |  |
| PassWd           |          | Input the password for Secure calibration                        |  |
| SecOn/           | On       | Turn On Secure Setting, disables the calibration by anyone       |  |
| SececOff         | Off      | Turn Off Secure Setting, enables the calibration by anyone       |  |
| Cal              |          | See the calibration times and the edition information            |  |

#### **Test**

Press  $|Utility| \rightarrow |Test/Ca| \rightarrow |Test|$ , to perform self-test. When the instrument is on, the system will perform the self-test automatically. This limited test can check if the instrument could work normally. To perform a general test needs15 seconds. If all the tests have been passed, you can use the generator freely. If the general test has been passed, the screen will show "Self-Test Passed"; if not, it will also tell you self-test failed and display the error message.

#### 1. Calibration

The information consists of the calibration counting and the edition. Please note that the generator has been calibrated before it leaved the factory, When you turn on a new instrument, the default number of the calibration is 0. You can get the information of the latest version on the company's website: <a href="http://www.rigol.com">http://www.rigol.com</a>.

#### 2. Password

This function is used to prevent unauthorized or accidental calibration to the generator. When the generator is firstly shipped to the user, it is secured. You have to unlock it before calibrating the instrument.



Figure 2-102 The Operation Menu

# **How to Use the Built-in Help System**

You can get a help for every button on the front panel by using the built-in help system. Or you can get help about the operation of the front panel buttons with the Help List. Press Help enter the following interface.

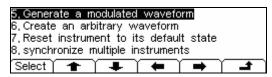



Figure 2-103 The Help Interface



Figure 2-104 The Operation Menu

Table 2-38 The Menu Explanations of Help System

| Function<br>Menu | Settings | Explanation                     |
|------------------|----------|---------------------------------|
| Select           |          | Select and read the Information |
| •                |          | Page Up                         |
| +                |          | Page Down                       |
| -                |          | Cursor Downward to select       |
| -                |          | Cursor Upward to select         |
| <b>±</b>         |          | Exit the help menu              |

#### 1. View the last message

View the last message

### 2. View the remote Command error queue

View the remote command error gueue in the remote operation.

### 3. Get HELP on any key

To get context-sensitive help on any front-panel key or menu softkey, press and hold that key for a few times.

## 4. Generate a DC-only Voltage level

- (1) Press Utility and select DC On .
- (2) Press Offset, then enter the desired voltage level.
- (3) Choose DC On/Off → DC Off , or press any function key to resume the normal waveform operation.

#### 5. Generate a modulated Waveform

- Configure the Carrier waveform by selecting the waveform shapes, frequency, amplitude, etc. Pulse can only be modulated using PWM; Noise and DC can not be modulated.
- (2) Configure the modulating waveform by pressing the Mod key.
- (3) To change the Carrier parameter, press the lighted function key (Sine, Square etc).
- (4) To turn off the modulation, press the lighted Mod key.

# 6. Create an arbitrary waveform

- (1) Press Arb and choose "Create New ".
- (2) Enter the desired period, voltage limit, and the number of points and then press "Edit Points", the first two points are defined for you.
- (3) Rotate the knob to select the desired point for editing and then use Time and Voltage to define the point. Press Insert Point to insert additional points as needed.
- (4) The waveform editor connects the last point to the voltage level of point #1 to create a continuous waveform. Make sure that the time value of the last point less than the specified period.
- (5) Pres End/Store to store the waveform and exit the waveform editor.

#### 7. Reset instrument to its default state

- (1) Press Utility to enter the utility function.
- (2) Choose System  $\rightarrow$  Setting;
- (3) Select Default to reset the instrument as its default state.

# 8. Synchronize multiple instruments

By using the external I/O of the generator, connect the instrument to the other kinds of instruments, to perform the synchronous control.

# 9. RIGOL Technology Support

To obtain technical support, contract the local **RIGOL** Support Center or go to **RIGOL** website: <a href="https://www.rigol.com">www.rigol.com</a>.

Consult Chapter 6 for more details.

# Chapter 3 Application & Examples

To help the User grasping how to use the Function/ Arbitrary Waveform Generator more efficiently, here we will giver some examples in detail.

# **Example 1: To Generate a Sine Wave**

How to generate a Sine Waveform with 20 kHz frequency, 2.5  $V_{pp}$  Amplitude and 0  $V_{dc}$  Offset.

### The operation steps:

- 1. Set the Frequency.
  - (1) Press Sine → Freq/Period and choose Freq which will display in reverse color;
  - (2) Enter "20" from the keypad and choose the unit "kHz". The Frequency is set as 20 kHz.
- 2. Set the Amplitude.
  - (1) Press Ampl/ HiLev to choose Ampl which will display in reverse color.
  - (2) Enter "2.5" from the keypad and choose the unit " $V_{pp}$ ". The Amplitude is set as 2.5 $V_{pp}$ .
- 3. Set the Offset.
  - (1) Press Offset /LoLev to choose Offset which will display in reverse color.
  - (2) Enter "0" from the keypad and choose the unit " $V_{dc}$ ", The Offset is set to be 0  $V_{dc}$ .

When the Frequency, Amplitude and Offset were set, the generated waveform is shown in figure 3-1.




Figure 3-1 The Sine Waveform

# **Example 2: To generate a Square Wave**

How to generate a Square waveform with 1MHz Frequency , 2.0  $V_{pp}$  Amplitude, 10m  $V_{dc}$  Offset and 30%Duty Cycle.

## The operation steps:

- 1. Set the Frequency.
  - (1) Press Square → Freq/Period and choose Freq which will display in reverse color.
  - (2) Enter "1" from the keypad and choose the unit "MHz" to set the Frequency as 1MHz.
- 2. Set the Amplitude.
  - (1) Press Ampl/ HiLev and choose Ampl which will display in reverse color.
  - (2) Enter "2" from the keypad and choose the unit " $V_{pp}$ " to set the Amplitude as 2  $V_{pp}$ .
- 3. Set the Offset.
  - (1) Press Offset /LoLev to choose Offset which will display in reverse color.
  - (2) Enter "10" from the keypad and choose the unit "mVdc" to set the Offset as 10m Vdc.
- 4. Set the Duty Cycle.
  - (1) Press Duty which will display in reverse color.
  - (2) Enter "30" from the keypad and choose the unit "%" to set the Duty Cycle as 30%.

When the Frequency, Amplitude Offset and Duty Cycle were set, the generated waveform is shown in figure 3-2.

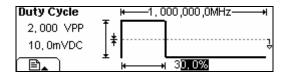



Figure 3-2 The Square Waveform

# **Example 3: To generate a Ramp Wave**

How to generate a Ramp waveform with Period of 10ms, Amplitude of  $100mV_{pp}$ , Offset of  $20mV_{dc}$  and Symmetry of 80%.

## The operation steps:

- 1. Set the Period.
  - (1) Press Ramp → Freq/Period and choose Freq which will display in reverse color.
  - (2) Enter "10" from the keypad and choose the unit "ms" to set the Period as 10ms.
- 2. Set the Amplitude.
  - (1) Press Ampl/ HiLev and choose Ampl which will display in reverse color.
  - (2) Enter "100" from the keypad and choose the unit "mV<sub>pp</sub>" to set the Amplitude as 100mV<sub>pp</sub>.
- 3. Set the Offset.
  - (1) Press Offset /LoLev to choose Offset which will display in reverse color.
  - (2) Enter "20" from the keypad and choose the unit "mV<sub>dc</sub>" to set the Offset as 20mV<sub>dc</sub>.
- 4. Set the Symmetry.
  - (1) Press Symmetry which will display in reverse color.
  - (2) Enter "80" from the keypad and choose the unit "%" to set the Symmetry as 80%.

When the Frequency, Amplitude Offset and Symmetry were set, the generated waveform is shown in figure 3-3.

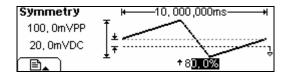



Figure 3-3 The Ramp Waveform

# **Example 4: To generate a Pulse Wave**

How to generate a Pulse waveform with 5kHz Frequency, 50mV High Level, -5mV Low Level, 20µs Pulse Width and 10ns Edge Time.

## The operation steps:

- 1. Set the Frequency.
  - (1) Press Pulse → Freq/Period and choose Freq which will display in reverse color.
  - (2) Enter "5" from the keypad and choose "kHz" to set the Frequency as 5 kHz.
- 2. Set the High Level.
  - (1) Press Ampl/ HiLev and choose HiLev which will display in reverse color.
  - (2) Enter "50" from the keypad and choose the unit " $mV_{pp}$ " to set the High Level as  $50mV_{pp}$ .
- 3. Set the Low Level.
  - (1) Press Offset /LoLev to choose LoLev which will display in reverse color.
  - (2) Enter "-5" from the keypad and choose the unit"  $mV_{dc}$ " to set the Low Level as -5mV.
- 4. Set the Pulse Width.
  - (1) Press DtyCyc/Width and choose Width which will display in reverse color.
  - (2) Enter "20" from the keypad and choose the unit " $\mu$ s" to set the Pulse Width as 20 $\mu$ s.
- 5. Set the Edge Time.
  - (1) Press Edge which will display in reverse color.
  - (2) Enter "10" from the keypad and choose the unit "ns" to set the Edge Time as 10ns.

When the Frequency, High Level, Low Level, Pulse Width and Edge Time were set, the generated waveform is shown in figure 3-4.

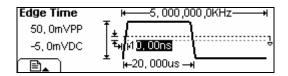



Figure 3-4 The Pulse Waveform

# **Example 5: To Generate a Noise Wave**

How to generate a Noise waveform with  $30\text{mV}_{pp}$  Amplitude ( $50\Omega$ ) and  $10\text{mV}_{dc}$  Offset.

## The operation steps:

1. Set the Output Load.

Press Utility  $\rightarrow$  Output  $\rightarrow$  Load/High Z  $\rightarrow$  Load, set the output load as  $50\Omega$ .

- 2. Set the Amplitude.
  - (1) Press Ampl/ HiLev and choose Ampl which will display in reverse color.
  - (2) Enter "30" from the keypad and choose the unit " $mV_{pp}$ " to set the Amplitude as  $30mV_{pp}$ .
- 3. Set the Offset.
  - (1) Press Offset/ LoLev to choose Offset which will display in reverse color.
  - (2) Enter "10" from the keypad and choose the unit" mVdc" to set the Offset as 10mVdc .

When the Amplitude and Offset were set, the generated waveform is shown in figure 3-5.

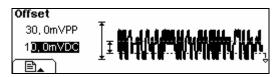



Figure 3-5 The Noise Waveform

# **Example 6: To generate Arbitrary Waveform**

How to generate an arbitrary waveform (Sinc) with 8MHz Frequency, 5V<sub>rms</sub> Amplitude and 0 V<sub>dc</sub> Offset.

# The operation steps:

- 1. Set the Type of the Arbitrary Waveform.
  - (1) Press  $|Arb| \rightarrow Load$ , to choose the built-in waveform.
  - (2) Press BuiltIn → Sinc , there are five built-in arbitrary waveforms. Choose Sinc, and press any key to return the Main Menu of Arb.

## 2. Set the Frequency.

- (1) Press Freg/Period and choose Freg which will display in reverse color.
- (2) Input "8" from the keypad and choose the unit "MHz" to set the Frequency as 8MHz.

#### 3. Set the Amplitude.

- (1) Press Ampl/ HiLev and choose Ampl which will display in reverse color.
- (2) Enter "5" from the keypad and choose the unit " $V_{rms}$ " to set the Amplitude as 5  $V_{rms}$ .

#### 4. Set the Offset.

- (1) Press Offset /LoLev to choose Offset which will display in reverse color.
- (2) Enter "0" from the keypad and choose the unit " $V_{dc}$ " to set the Offset as 0  $V_{dc}$ .

When the Type of the Arbitrary Waveform, Frequency, Amplitude and Offset were set, the generated waveform is shown in figure 3-6.

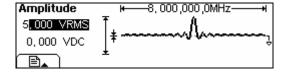



Figure 3-6 The Sinc Waveform

Right now, the selected waveform is appointed to Arb. This waveform will be generated once the key is pressed. Press Arb to make sure which kind of waveform is selected.

# **Example 7: To Create an Arbitrary Waveform**

How to create an arbitrary Waveform as the below figure (the Self-Defined Waveform is Ramp).

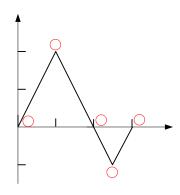



Figure 3-7 The Arbitrary Waveform

\/

# The operation steps:

1. Create a new Waveform:

4

2

Press  $Arb \rightarrow Edit \rightarrow Creat$ , to activate the waveform editing function. The waveform is defined by setting the time and voltage of the points.

2. Set the period.

2

- (1) Press Period which will display in reverse color.
- (2) Input "12" from the keypad and choose the unit " $\mu$ s" to set the Period as 12 $\mu$ s.

3. Set the Voltage Limit.

4

- (1) Press LevelHi, and enter "4" from the keypad, choose the unit "V", to set the High Level as 4V.
- (2) Press LevelLo , and enter "-2" from the keypad, choose the unit "V", to set the low Level as -2V.
- 4. Set the Number of the initializing Points Set the Initializing Point Number as "4".
- 5. Choose the Interpolation Method.

Press Interp.  $\rightarrow$  Interpation On , to perform linear connection between the points.

3

3

4

#### 6. Edit the Waveform Points.

Edit the Voltage and Time of the points to define a waveform. Insert or delete the point If needed.

Press Points, use the knob or the keypad to shift among the different point. The voltage and time of the points are defined below in table 3-1.

| Point | Time | Voltage |
|-------|------|---------|
| 1     | 0s   | 0V      |
| 2     | 4µs  | 4V      |
| 3     | 8µs  | 0V      |
| 4     | 10µs | -2V     |

Table 3-1 The Setting of Time and Voltage of the points

#### 7. Save the Waveform.

Press Save , to store the waveform in one of the 4 Non-Volatile Memories.

Press Store, to store the finished waveform in the Volatile Memory. Only one self-built waveform can be stored. If a new one is stored, the old one will be erased.

The waveform is generated by the steps above. The waveform is shown in figure 3-8.

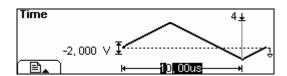



Figure 3-8 The Self-Defined Ramp Waveform

# **Example 8: To Generate an AM Waveform**

How to generate an AM Waveform with depth of 70%, the Carrier wave is a Sine Wave with 2.5 kHz Frequency, and the modulating Wave is a Sine Wave with 150 Hz Frequency.

### The operation steps:

1. Choose the Carrier Function:

Press Sine, and choose the Sine Waveform as the Carrier Wave.

The default setting of the Source is internal.

- 2. Set the Frequency, Amplitude and Offset.
  - (1) Press Period/Freq and choose Freq which will display in reverse color. Enter "2.5" from the keypad and choose the unit "kHz" to set the Frequency as 2.5kHz.
  - (2) Press Ampl/HiLev and choose Ampl which will display in reverse color. Enter "2" from the keypad and choose the unit " $V_{pp}$ " to set the Amplitude as 2  $V_{pp}$ .
  - (3) Press Offset/LoLev and choose Offset which will display in reverse color. Enter "0" from the keypad and choose the unit "Vdc" to set the Offset as 0 Vdc.
- 3. Set the Modulation Type AM.

Press  $\boxed{\text{Mod}} \rightarrow \boxed{\text{Type}} \rightarrow \boxed{\text{AM}}$ , Please notice that the message shown on the top left side of the screen is "AM".

4. Set the Modulation Depth

Press Depth , use the keypad to enter "70", choose the unit "%", setting the Modulation Depth as 70%.

5. Set the AM Frequency

Press Freq , use the keypad to enter "150", choose the unit "Hz", setting the AM Frequency as 150Hz.

6. Choose the Modulating Waveform.

Press Shape  $\rightarrow$  Sine , to choose Sine Waveform as the Modulating Waveform.

Please note that the State Message on the top left side of the screen shows "Sine".

At this time, the instrument generates the specified AM waveform. The Waveform is shown in figure 3-9.

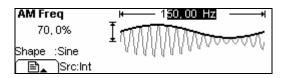



Figure 3-9 The AM Waveform

7. Turn off the Modulation Function.

Press the lighted Mod Key to turn off the Modulation Function.

# **Example 9: To Generate an FSK Waveform**

How to generate a FSK Waveform with FSK Rate of 200Hz, the Carrier Wave is a Sine Wave with 10 kHz Frequency, and the hop Frequency is 800 Hz.

# The operation steps:

1. Choose the Carrier Function:

Press Sine, and choose the Sine Waveform as the Carrier Function. The default setting of the Source is Internal.

- 2. Set the Frequency, Amplitude and Offset.
  - (1) Press Period/Freq and choose Freq which will display in reverse color. Enter "10" from the keypad and choose the unit "kHz" to set the Frequency as 10 kHz.
  - (2) Press Ampl/HiLev and choose Ampl which will display in reverse color. Enter "2" from the keypad and choose the unit " $V_{pp}$ " to set the Amplitude as  $2V_{DD}$ .
  - (3) Press Offset/LoLev and choose Offset which will display in reverse color. Enter "0" from the keypad and choose the unit "Vdc" to set the Offset as 0 Vdc.
- 3. Set the Modulation Type FSK.

Press  $\underline{\mathsf{Mod}} \to \mathsf{Type} \to \mathsf{FSK}$ , choose FSK. Please notice that the message shown on the top left side of the screen is "FSK".

4. Set the FSK Rate

Press FSKRate, use the keypad to enter "200", choose the unit "Hz", setting the FSK Rate as 200Hz.

5. Set the Hop Frequency

Press HopFreq , use the keypad to enter "800", choose the unit "Hz", setting the Hop Frequency as 800Hz.

At this time, the instrument generates the specified FSK waveform. The Waveform is shown in figure 3-10.

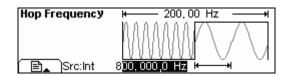



Figure 3-10 The FSK Waveform

6. Turn off the Modulation Function.

Press the lighted Mod Key to turn off the Modulation Function.

# **Example 10: To generate a PWM Waveform**

How to generate a PWM waveform with the modulate frequency 150Hz, the offset 25%. And the carried wave is a pulse waveform with the frequency 1 kHz, the offset 25% and the edge time 9ns.

### The operation steps:

- choose the shape of carried wave
   Press Pulse, choose pulse as the carried wave. The default type of source is the internal.
- 2. To set the frequency, amplitude and offset of the carried wave.
  - (1) Press Freq/Period to choose Freq which will display in reverse color, then use the keyboard enter "1" and choose the unit "kHz" to set the frequency as 1 kHz.
  - (2) Press Ampl/Hile to choose Ampl which will display in reverse color, then use the keyboard enter "5" and choose the unit " $V_{pp}$ " to set the amplitude as 5  $V_{pp}$ .
  - (3) Press Offset/Lolev to choose Offset which will display in reverse color, then use the keyboard enter "0" and choose the unit "Vdc" to set the offset as 0 Vdc.
    - When you have set all the parameters, you can observe the carried wave you have just set in the figure display mode.
- 3. Choose PWM as the modulate type
  Press Mod in the pulse wave interface and enter the Pulse-Width Modulation.
- 4. To set the duty and offset

  Press DtyDev and use the keyboard enter "25", then choose the unit "%" to set the duty offset as 25%.
- 5. To set the frequency of modulation
  Press Freq and use the keyboard enter "150", then choose the unit "Hz" to set the
  frequency of the modulation as 150Hz.
- 6. Choose the type of the modulation wavePress Shape → Sine , choose sine wave as the modulation wave .

Now the signal generator will export the PWM wave according to your setting, the figure is shown below.

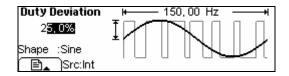



Figure 3-11 The PWM Waveform

7. Close the modulation function
Press Mod and the modulation function will be closed.

# **Example 11: To generate a Linear Sweep**

How to generate a Sine Sweep Waveform whose frequency starts from 100Hz to 10kHz. Use the Internal Trigger Mode, Linear Sweep, and the Sweep time is 1s.

# The operation steps:

1. Choose the Sweep Function:

Press Sine, and choose the Sine Waveform as the Sweep Function.

The default setting of the Source is Internal.

- 2. Set the Frequency, Amplitude and Offset.
  - (1) Press Period/Freq and choose Freq which will display in reverse color. Enter "5" from the keypad and choose the unit "kHz" to set the Frequency as 5 kHz.
  - (2) Press Ampl/HiLev and choose Ampl which will display in reverse color. Enter "2" from the keypad and choose the unit " $V_{pp}$ " to set the Amplitude as 2  $V_{pp}$ .
  - (3) Press Offset/LoLev and choose Offset which will be displayed in reverse color. Enter "0" from the keypad and choose the unit "V<sub>dc</sub>" to set the Offset as 0 V<sub>dc</sub>.

You can view the Sweep Waveform in the Graph Mode.

3. Set the Sweep Mode.

Press  $\boxed{\text{Mod}} \rightarrow \boxed{\text{Linear/Log}}$  and choose Linear. Please notice that the message shown on the top left side of the screen is "Linear".

4. Set the Sweep Time

Press Time, use the keypad to enter "1", choose the unit "s", to set the Sweep Time as 1s.

5. Set the Start Frequency

Press Start , use the keypad to enter "100", choose the unit "Hz", to set the Start Frequency as 100Hz.

6. Set the Stop Frequency

Press Stop , use the keypad to enter "10", choose the unit "kHz", to set the Stop Frequency as 10 kHz.

At this time, the instrument generates the specified Sweep waveform whose

frequency starts from 100Hz and stops at 10 kHz. The Waveform is shown in figure 3-12.

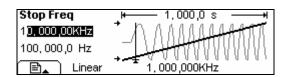



Figure 3-12 The Sweep Waveform

# **Instructions**

If necessary, you can set the frequency Limits by setting the Center Frequency and the Frequency Range. These parameters are similar to the Start and Stop frequency, which will provide more flexibility for you. To generate the same waveform, set the Center Frequency to be 5.050 kHz, the frequency range is 9.900 kHz.

# **Example 12: To generate a Burst Waveform**

How to generate a Burst Waveform with the 3 Cycle. The period is 10ms. But you can not change parameters in the default setting: Internal Source and 0 degree Start Phase.

## The operation steps:

1. Choose the Burst Function:

Press Square, and choose the Square Waveform as the Burst Function.

The default setting of the Source is Internal.

- 2. Set the Frequency, Amplitude and Offset.
  - (1) Press Period/Freq and choose Freq which will display in reverse color. Enter "5" from the keypad and choose the unit "kHz" to set the Frequency as 5 kHz.
  - (2) Press Ampl/HiLev and choose Ampl which will display in reverse color. Enter "5" from the keypad and choose the unit " $V_{pp}$ " to set the Amplitude as 5  $V_{pp}$ .
  - (3) Press Offset/LoLev and choose Offset which will display in reverse color. Enter "0" from the keypad and choose the unit "Vdc" to set the Offset as 0 Vdc.

You can view the Burst Waveform in the Graph Mode.

3. Set the Burst Mode.

Press  $|Burst| \rightarrow NCycle$  to choose N-Cycle Mode. Please note that the message shown on the top left side of the screen is "N Cycle".

4. Set the Burst Period

Press Period , use the keypad to enter "10", choose the unit "ms" and set the Period as 10 ms (Please note the icon).

5. Set the Start Phase

Press Phase , use the keypad to enter "0", choose the unit "o", setting the Start phase as 0°.

6. Set the Burst Cycles

Press Cycles, use the keypad to enter "3", choose the unit "Cyc", setting the Burst Cycle as 3.

# 7. Set the Delay

Press Delay, use the keypad to enter "200", choose the unit " $\mu$ s", setting the Burst Delay as 200 $\mu$ s.

At this time, the instrument generates the specified 3- Cycle Burst waveform with a period of 10ms. The Waveform is shown in figure 3-13.

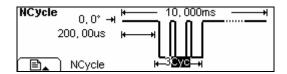



Figure 3-13 The Burst Waveform

# Chapter 4 Prompt messages & troubleshooting

# **Prompting Messages**

# **Common Prompt Messages**

### Need Help? Press and hold down any key.

Prompt Message 1. While using the instrument, users can get help by using the method shows above.

## Settings are restored from last power-down.

Prompt Message 2. To inform the user that all the settings have been restored and you can operate the instrument normally.

## Selected interface is USB, no USB device detected!

Prompt Message 3. When the instrument is powered, it detects that the current I/O is USB, and informs the user that no new USB device is detected.

#### No Changes.

When the waveform parameter is being altered, if the user cancels the operation, the message will prompt.

#### Selected arb is \*\*

#### Please Wait...

It takes time to save or recall the data, and this message is to tell the user to wait.

# First, set the general waveform parameters.

To inform the user, set the general waveform parameter first. Then set the parameters for each point.

#### Edit the existing waveform parameters.

Perform the waveform edit operation, and inform the user that operation can be taken to edit the current waveform parameter.

## The selected arbitrary waveform is Volatile.

Inform the user that the selected waveform is Volatile.

# Restore all instrument settings to factory defaults?

If user wants to reset the instrument to the default setting, the system will prompt this message, to confirm the operation and avoid accidental mistake.

## All settings are restored to factory defaults:

When all the settings of the instrument have been reset to the default state, this message will prompt to inform the user.

### Storing waveform, please wait...

Inform the user that the saving operation is in process.

### Waveform has been stored as required.

Save the waveform to the specific position according to the user request. Once the waveform is saved, this message prompts.

## Performing Self-Test, Please wait...

When the Self-Test is performing, this message will prompt to inform the user to wait for a moment.

#### Self-Test Passed.

When the Self-Test is finished, the result will be reported to the user. If the Self-test has been passed, this message will prompt.

#### The instrument now is UNSECURED.

Inform the user that the password is correct and the user can calibrate the instrument now. The instrument is unsecured.

### Instrument triggered.

The manual trigger mode is activated, and the expected burst or sweep will generate.

#### Selected modulating arb is \*\*:

Inform the user of the information about the selected modulating waveform.

#### Calibration Count=0, Reversion=04040109:

Inform the user of the Calibration times and the version. Before the instrument is shipped, it has already been calibrated. When you power a new instrument, the default calibration times is 0. The latest version can be get at the company's website: http:// www.rigol.com.

## Calibrating, Please wait...

In the Calibration menu, inform the user to wait when the instrument is preparing to calibrate.

#### File doesn't exist!

When deleting the file, to inform the user that the file does not exist.

# Complete. Waveform setting have been changed:

Inform the user that the file has been recalled and display the set waveform.

#### Complete. Waveform data have been changed:

Inform the user that the file has been recalled and display the set arbitrary waveform's data.

#### Please select type.

When storing the file and the storage type is "all", inform the user to choose the storage type.

## **Insufficient space. Fail to Save.**

If the file to be stored is too large, and the Non-Volatile Memory does not have enough space, the new file can not be stored. This is to inform the user that the storage operation failed.

#### Fail to read file.

If there is no file in the place the user selects, no file can be read and this message is to inform the user that the file recall operation failed.

#### Please select a valid File.

If the selected place is empty when recall or delete a file, this message will appear.

#### Delete the file?

Confirm the deletion operation, in case of accidental operation.

#### Cover the file?

If the current place has already been used when the user wants to store the file, this message will appear to confirm the operation. If the user continues, the old file will be covered. Press "Yes" to continue; Press "Cancel" to reselect the place.

### Can't Write this File to system.

This message appears when the operation of burning menu or programs into the system from the U Disk fails.

#### File is too big.

If the menu or programs are too large to be burnt into the system from the U Disk, this message will appear to inform the user that the operation fails.

#### Invalid File, Fail to update.

When using the U Disk to update the system, if the updating file is void, this message will appear to inform the user that the system updating operation can not be performed.

#### Updating is completed. Restart the instrument.

If the updating of the System is successful by using the U disk, this message will appear. The instrument has to be restarted to update the settings. It also informs the user that if a technical problem occurs after the updating, contact the **RIGOL** technician for support.

#### Invalid code.

When the user is updating the system, if the system updating operation password is wrong, this message will appear.

#### Valid code. System update is permitted.

When the user is updating the system, if the system updating operation password is

correct this message will appear.

## Wave file will cover.

If the arbitrary waveform to be stored is larger than 128K, other places will be used to store the waveform.

## Mobile disk installation is error!

U disk installation failed, and the system could not identify it.

# **Error Messages**

## Incorrect secure code, please try again.

Users have to enter the correct password before they calibrate the instrument. If the password is incorrect, this message will appear to inform the user enter the password again.

## Please first complete step\*\*:

Before the instrument is calibrated, if the user wants to perform the selected calibration procedure, this is to inform the user to start from step\*\*.

### Select units to enter value or press CANCEL.

When a parameter is input, inform the user "Choose the parameter unit" to finish changing the parameter or press Cancel button to cancel the current operation.

# Trigger ignored, OUTPUT is off.

If groups of GET commands or \* Trigger are received, the system will ignore the grouped GET commands to secure the right source.

#### Instrument is in remote mode. Press Local.

If the instrument is in the Remote Mode, the front panel will be nullified. Press Local (also A), to shift the instrument mode into local, so that the front panel can work.

### Initial # of points upper limit=524,288

The upper limit of the initial points is 524,288. If the specified waveform has more than 524,288 points, the system will adjust the number to 524,288 automatically.

# **Conflict Settings**

#### **Turned off infinite burst.**

Infinite burst is allowed only when the source is external or manual. The upper limit of the burst cycle is 500,000.

## Trigger source changes to Ext/Manual.

Only when the External or Manual Trigger Source is selected, the infinite burst is allowed.

## **Burst period increased to fit entire burst.**

The PRI of Period is higher than that of the Burst Period. As long as the burst period does not reach its maximum, the generator will increase the burst period to cater to the need of the specific burst cycle or waveform frequency.

#### **Burst count reduced.**

If the burst period has reached its maximum, reduce the burst count to meet the need of the specified waveform frequency.

### Trigger delay reduced to fit entire burst.

Trigger delay will be reduced to fit the current burst period and burst count. Trigger delay is the time between the time trigger is received and the start of the burst.

## Sorry, unable to N-cycle burst with noise.

Noise can not be used in the trigger burst mode; it can only be used in the gated burst.

#### Triggered burst not available for noise.

Noise can not be used in the trigger burst mode; it can only be used in the gated burst.

#### **Trigger ignored -OUTPUT is off.**

When the OUTPUT is disabled, the Trigger Output will be disabled automatically.

## Trigger output connector used by FSK.

If the FSK is activated and the Source is external, no "Trigger Output" is allowed.

#### Trigger output connector used by burst gate.

If the gated burst mode is activated and the burst is also activated, no "Trigger Output" is allowed.

## Frequency is set maximum for Arb.

The maximum frequency for the arbitrary waveform is 12MHz. when a waveform of higher frequency is changed to the arbitrary waveform, the system will adjust the frequency to 12MHz automatically.

#### Frequency is set maximum for Pulse.

The maximum frequency for the pulse is 8MHz. when a waveform of higher frequency is changed to the pulse waveform, the system will adjust the frequency to 16MHz

automatically.

### Frequency is set maximum for ramp.

The maximum frequency for Ramp is 400kHz. When a waveform of higher frequency is changed to the Ramp waveform, the system will automatically adjust the frequency to 400kHz.

#### Frequency is set maximum for Burst.

For an internal burst, the minimum frequency is 2mHz, and the maximum is 8MHz. The generator will adjust the frequency to be compatible with the currently specified one automatically.

## Frequency is set minimum for Burst.

For an internal burst, the minimum frequency is 2mHz, and the maximum is 8MHz. The generator will adjust the frequency to be compatible with the currently specified one automatically.

### Frequency is set minimum for FM.

When the FM is activated, the minimum carrier frequency output is  $1\mu$ Hz. The generator will adjust the frequency to be compatible with the currently specified one automatically.

#### Sorry, unable to modulate Noise.

Noise, Pulse and DC can not be modulated using AM, FM, PM or FSK methods.

### Sorry, unable to modulate DC.

Noise, Pulse and DC can not be modulated using AM, FM, PM or FSK methods.

#### Sorry, unable to sweep Pulses.

Pulse, Noise and DC can not be used to generate sweep signals.

#### Sorry, unable to sweep Noise.

Pulse, Noise and DC can not be used to generate sweep signals.

#### Sorry, unable to sweep DC.

Pulse, Noise and DC can not be used to generate sweep signals.

#### Modulation has been turned off to allow Pulse.

Pulse, noise and DC are not allowed to generate modulated waveform. So the modulation has to be turned off to allow Pulse.

#### Modulation has been turned off to allow Noise.

Pulse, noise and DC are not allowed to generate modulated waveform. So the modulation has to be turned off to allow Noise

#### Modulation has been turned off to allow DC.

Pulse, noise and DC are not allowed to generate modulated waveform. So the modulation has to be turned off to allow DC

#### Sweep has been turned off to allow Pulse.

Pulse, noise and DC are not allowed to generate Sweep waveform. So the modulation

has to be turned off to allow Pulse.

## Sweep has been turned off to allow Noise.

Pulse, noise and DC are not allowed to generate Sweep waveform. So the modulation has to be turned off to allow Noise.

#### Sweep has been turned off to allow DC.

Pulse, noise and DC are not allowed to generate Sweep waveform. So the modulation has to be turned off to allow DC.

## Manual Trigger only for Sweep, N-Cycle Burst.

Manual Trigger is only used for Sweep and N-Cycle Burst.

#### Trigger Source has been changed to Manual.

When Trigger is enabled, the source type turns from internal to manual.

### Pulse width was reduced by period.

For a pulse waveform, the generator will adjust the waveform parameter automatically to fit the need of the pulse according to the order below: Edge time-Pulse Width-Period. In this case, the generator will reduce the pulse width to cater to the need of the period. The Edge Time is already set to the minimum value.

# **Edge Time was reduced by period.**

For a pulse waveform, the generator will adjust the waveform parameter automatically to fit the need of the pulse according to the order below: Edge time-Pulse Width-Period. In this case, the generator will reduce the Edge Time to cater to the need of the period.

#### Amplitude (V<sub>rms</sub>) upper limit =3.536V<sub>rms</sub>

For example: if a square wave with the amplitude of 5  $V_{rms}$  connects to a 50 ohm resistance was turned into a sine waveform, then the generator will change the amplitude to 3.536  $V_{rms}$  automatically.

#### Offset has changed due to Amplitude.

In DC voltage function, voltage level is adjusted through the change of the offset, and the current amplitude will be ignored. When changing to the other function, the generator will adjust the offset voltage to fit the current amplitude setting.

#### Deviation has been changed due to carrier frequency.

The Carrier frequency should always be greater than or equal to the deviation frequency. If the carrier frequency is set less than the deviation frequency, when FM is activated, the generator will adjust the deviation frequency to the value automatically that the current carrier frequency allows.

#### Duty cycle is limited at a higher frequency.

If the waveform is set Square and the frequency is set to a value which does not allow the current Duty Cycle, the Duty Cycle will adjust to the value automatically that the current frequency allows. For example, if the current Duty Cycle is 70%, and the frequency is changed to 30 MHz, the Duty Cycle will be changed to 50%.

For a frequency less than 8 MHz, the Duty Cycle range is 20% to 80%.

For a frequency between 8MHz and 16 MHz, the Duty Cycle range is 40% to 60%; For a frequency greater than 16 MHz, the Duty Cycle is 50%.

### Other parameters were modified.

For the Pulse Waveform, the generator will adjust the following parameters automatically in the order below to generate the pulse waveform: Edge time- Pulse Width-Period. When the period changes, the Edge Time and Pulse Width will also change according to the period.

## **Burst type has been changed to N-Cycle.**

When the Trigger Source is turn from External/ Manual to Internal, the Burst Mode should be changed to N-Cycle.

#### Sorry, unable to burst DC.

The generator can not use DC Voltage function to generate Burst.

# Burst has been turned off to allow DC.

The generator can not use DC to generate Burst. So the Burst is turned off.

## **Data Overflow**

# Sine Wave frequency upper limit=40MHz

The Sine wave frequency upper limit is 40MHz. If the specified frequency is higher than 40MHz, the system will adjust the frequency to 40MHz automatically.

# Sine Wave frequency lower limit= 1µHz

The Sine wave frequency lower limit is  $1\mu$ Hz. If the specified frequency is lower than  $1\mu$ Hz, the system will adjust the frequency to  $1\mu$ Hz automatically.

### Square Wave frequency upper limit=40MHz

The Square wave frequency upper limit is 40MHz. If the specified frequency is higher than 40MHz, the system will adjust the frequency to 40MHz automatically.

## Square Wave frequency lower limit=1µHz

The Square wave frequency lower limit is  $1\mu$ Hz. If the specified frequency is lower than  $1\mu$ Hz, the system will adjust the frequency to  $1\mu$ Hz automatically.

### Ramp Wave frequency upper limit= 400kHz

The Ramp wave frequency upper limit is 400kHz. If the specified frequency is higher than 400kHz, the system will adjust the frequency to 400kHz automatically.

## Ramp Wave frequency lower limit= 1µHz

The Ramp wave frequency lower limit is  $1\mu$ Hz. If the specified frequency is lower than  $1\mu$ Hz, the system will adjust the frequency to  $1\mu$ Hz automatically.

## Pulse Wave frequency upper limit=16MHz

The Pulse wave frequency upper limit is 16MHz. If the specified frequency is higher than 16MHz, the system will adjust the frequency to 16MHz automatically.

#### Pulse Wave frequency lower limit= 500µHz

The Pulse wave frequency lower limit is  $500\mu$ Hz. If the specified frequency is lower than  $500\mu$ Hz, the system will adjust the frequency to  $500\mu$ Hz automatically.

#### Arb Wave frequency upper limit= 12MHz

The Arb wave frequency upper limit is 12MHz. If the specified frequency is higher than 12MHz, the system will adjust the frequency to 12MHz automatically.

# Arb Wave frequency lower limit= 1µHz

The Arb wave frequency lower limit is  $1\mu$ Hz. If the specified frequency is lower than  $1\mu$ Hz, the system will adjust the frequency to  $1\mu$ Hz automatically.

#### Sine Wave period upper limit= 1Ms

The Sine Wave Period upper limit is 1Ms. If the specified period is greater than 1Ms, the system will adjust the period to 1Ms automatically.

#### Sine Wave period lower limit= 25ns

The Sine Wave Period lower limit is 25ns. If the specified period is less than 25ns, the system will adjust the period to 25ns automatically.

## **Square Wave period upper limit= 1Ms**

The Square Wave Period upper limit is 1Ms. If the specified period is greater than 1Ms, the system will adjust the period to 1Ms automatically.

## **Square Wave period lower limit= 25ns**

The Square Wave Period lower limit is 25ns. If the specified period is less than 25ns, the system will adjust the period to 25ns automatically.

## Ramp Wave period upper limit= 1Ms .

The Ramp Wave Period upper limit is 1Ms. If the specified period is greater than 1Ms, the system will adjust the period to 1Ms automatically.

## Ramp Wave period lower limit= 2.5µs .

The Ramp Wave Period lower limit is 2.5ns. If the specified period is less than 2.5ns, the system will adjust the period to 2.5ns automatically.

### Pulse Wave period upper limit= 2Ks .

The Pulse Wave Period upper limit is 2Ks. If the specified period is greater than 2Ks, the system will adjust the period to 2Ks automatically.

## Pulse Wave period lower limit= 62.5ns .

The Pulse Wave Period lower limit is 62.5ns. If the specified period is less than 62.5ns, the system will adjust the period to 62.5ns automatically.

#### Arb Wave period upper limit = 1Ms .

The Arb Wave Period upper limit is 1Ms. If the specified period is greater than 1Ms, the system will adjust the period to 1Ms automatically.

#### Arb Wave period lower limit= 83.3ns .

The Arb Wave Period lower limit is 83.3ns. If the specified period is less than 83.3ns, the system will adjust the period to 83.3ns automatically.

## Amplitude upper limit= \*\*

Different mode has different amplitude upper limit; amplitude upper limit may vary in the same mode if the load is different.

#### **Amplitude lower limit= \*\***

Different mode has different amplitude lower limit; amplitude lower limit may vary in the same mode if the load is different.

#### **High level upper limit = \*\***

Different mode has different High Level upper limit; High Level upper limit may vary in the same mode if the load is different.

## Low level lower negative limit=\*\*

Different mode has different High Level lower limit; High Level lower limit may vary in the same mode if the load is different.

## High level must be greater than Low level.

High level must always be greater than Low level. If the high level is set less than the

low level, the generator will set the low level 1 mV less than the high level automatically.

## **Duty Cycle upper/lower limit = \*\***

In the Square mode, different frequency range corresponds to different Duty Cycle limit.

For a frequency lower than 25MHz, the range is from 20% to 80%;

For a frequency between 25 ~ 50MHz, the range is from 40% to 60%;

For a frequency higher than 50MHz, the Duty Cycle is set to be 50%.

## Symmetry upper limit = 100.0%.

In the Ramp mode, the Symmetry upper limit is 100%. If the specified symmetry is greater than 100%, the system will adjust the symmetry to 100% automatically.

### Symmetry lower negative limit = 0.0%.

In the Ramp mode, the Symmetry lower limit is 0.0%. If the specified symmetry is less than 0.0%, the system will adjust the symmetry to 0.0% automatically.

## Pulse Width is limited by Period.

The Pulse Width should be less than the difference of the period and the Edge Time. Pulse Width< period-  $1.6\times$ Edge Time.

## **Edge Time is limited by Period**

The specified Edge Time should be in the specified period. The generator will adjust the Edge Time to meet the need of the period. Edge Time < 0.625×Pulse Width.

#### Pulse width lower limit = 12ns

In the Pulse mode, the Pulse width lower limit is 12ns. If the specified pulse width is less than 12ns, the system will adjust the pulse width to 12ns automatically.

#### **Edge Time lower limit = 5ns.**

In the Pulse mode, the Edge Time lower limit is 5ns. If the specified Edge Time is less than 5ns, the system will adjust the Edge Time to 5ns automatically.

### Offset upper limit= \*\*

Different mode has different Offset upper limit; Offset upper limit may vary in the same mode if the load is different.

# Offset lower negative limit = \*\*

Different mode has different Offset lower limit; Offset lower limit may vary in the same mode if the load is different.

#### Initial # of points upper limit = 524,288

The number of initial points upper limit is 524,288. If the specified waveform has more than 524,288 points, the system will adjust the point number to 524,288 automatically.

#### Initial # of points lower limit=2.

The default initial point number is 2, the lower limit of the initial points. If the specified initial point is less than 2, the system will adjust the number to 2 automatically.

#### Point # lower limit=1.

When the user is editing the point, if the input number is less than 1, the system will inform the user to start from point #1.

## Currently on the last defined point.

When the user is about to edit the last defined point, this message will prompt.

### **Deviation cannot exceed Carrier Frequency.**

The carrier Frequency should always be higher than or equal to the deviation frequency.

#### Frequency Deviation lower limit = 5.0Hz.

Frequency deviation lower limit is 5.0Hz. If the specified Frequency deviation is lower than 5.0Hz, the system will adjust the Frequency deviation to 5.0Hz automatically.

### FM Frequency upper limit = 20kHz

FM Frequency upper limit is 20kHz. If the specified FM Frequency is higher than 20kHz, the system will adjust the FM Frequency to 20kHz automatically.

#### **FM Frequency lower limit = 2mHz**

FM Frequency lower limit is 2mHz. If the specified FM Frequency is lower than 2mHz, the system will adjust the FM Frequency to 2mHz automatically.

### **Deviation plus Carrier cannot exceed maximum.**

The sum of the Carrier frequency and the deviation frequency should be lower than or equal to the selected maximum frequency plus 100kHz.

#### AM Depth upper limit = 120.0%.

The AM Depth upper limit is 120.0%. If the specified AM Depth is greater than 120.0%, the system will adjust the AM Depth to 120.0% automatically.

#### AM Depth lower limit = 0.0%.

The AM Depth lower limit is 0.0%. If the specified AM Depth is less than 0.0%, the system will adjust the AM Depth to 0.0% automatically.

## **AM Frequency upper limit = 20kHz**

The AM Frequency upper limit is 20kHz. If the specified AM Frequency is higher than 20kHz, the system will adjust the AM Frequency to 20kHz automatically.

#### **AM Frequency lower limit = 2mHz**

The AM Frequency lower limit is 2mHz. If the specified AM Frequency is lower than 2mHz, the system will adjust the AM Frequency to 2mHz automatically.

#### **Hop Frequency upper limit = \*\***

Different Source types have different Hop Frequency upper limit. If the Carrier is a Square or Sine wave, the Hop Frequency upper limit is 400MHz; If the Carrier is a Ramp wave, the Hop Frequency upper limit is 400kHz; If the Carrier is an Arb wave, the Hop Frequency upper limit is 12MHz.

#### Hop Frequency lower limit = $1\mu$ Hz

The Hop Frequency lower limit is  $1\mu$ Hz. If the specified Hop Frequency is lower than  $1\mu$ Hz, the system will adjust the Hop Frequency to  $1\mu$ Hz automatically.

## FSK Rate upper limit = 100kHz

The FSK Rate upper limit is 100kHz. If the specified FSK Rate is greater than 100kHz, the system will adjust the FSK Rate to 100kHz automatically.

#### **FSK Rate lower limit = 2mHz**

The FSK Rate lower limit is 2mHz. If the specified FSK Rate is less than 2mHz, the system will adjust the FSK Rate to 2mHz automatically.

## Phase deviation upper limit=360°

The Phase deviation upper limit is 360°. If the specified Phase deviation is greater than 360°, the system will adjust the Phase deviation to 360° automatically.

#### Phase deviation lower limit= 0°

The Phase deviation lower limit is  $0^{\circ}$ . If the specified Phase deviation is less than  $0^{\circ}$ , the system will adjust the Phase deviation to  $0^{\circ}$  automatically.

## PM Frequency upper limit= 20kHz

The PM Frequency upper limit is 20kHz. If the specified PM Frequency is higher than 20 kHz, the system will adjust the PM Frequency to 20kHz automatically.

## PM Frequency lower limit= 2mHz

The PM Frequency lower limit is 2mHz. If the specified PM Frequency is lower than 2mHz, the system will adjust the PM Frequency to 2mHz automatically.

# Start Frequency upper limit = \*\*

Different Source types have different Start Frequency upper lower. If the Carrier is a Square or Sine wave, the Start Frequency upper limit is 400MHz; if the Carrier is a Ramp wave, the Start Frequency upper limit is 400kHz; if the Carrier is an Arb wave, the Start Frequency upper limit is 12MHz.

#### Start Frequency lower limit = $1\mu$ Hz

The Start Frequency lower limit is  $1\mu$ Hz. If the specified Start Frequency is lower than  $1\mu$ Hz, the system will adjust the Start Frequency to  $1\mu$ Hz automatically.

### **Stop Frequency upper limit = \*\***

Different Source types have different Stop Frequency upper limit. If the Carrier is a Square or Sine wave, the Stop Frequency upper limit is 400MHz; if the Carrier is a Ramp wave, the Stop Frequency upper limit is 400kHz; if the Carrier is an Arb wave, the Stop Frequency upper limit is 12MHz.

### Stop Frequency lower limit $=1\mu$ Hz

The Stop Frequency lower limit is  $1\mu$ Hz. If the specified Stop Frequency is lower than  $1\mu$ Hz, the system will adjust the Stop Frequency to  $1\mu$ Hzautomatically.

# **Center Frequency upper limit = \*\***

Different Source types have different Center Frequency upper limit. If the Carrier is a

Square or Sine wave, the Center Frequency upper limit is 34MHz; If the Carrier is a Ramp wave, the Center Frequency upper limit is 400kHz; If the Carrier is an Arb wave, the Center Frequency upper limit is 12MHz.

### Center Frequency lower limit = $1\mu$ Hz

The Center Frequency lower limit is  $1\mu$ Hz. If the specified Center Frequency is lower than  $1\mu$ Hz, the system will adjust the Center Frequency to  $1\mu$ Hz automatically.

### Frequency span upper limit = \*\*

With different Source type modes and center frequencies, the frequency span upper limits vary.

## Frequency span lower limit = \*\*

With different Source type modes and center frequencies, the frequency span lower limits vary.

### **Sweep Time upper limit = 500.00s**

The Sweep Time upper limit is 500.00s. If the specified Sweep Time is greater than 500.00s, the system will adjust the Sweep Time to 500.00s automatically.

### Sweep Time lower limit = 1.0ms

The Sweep Time lower limit is 1.0ms. If the specified Sweep Time is less than 1.0ms, the system will adjust the Sweep Time to 1.0ms automatically.

### Phase upper limit= +360.0°

The Phase upper limit is  $+360.0^{\circ}$ . If the specified Phase is greater than  $+360.0^{\circ}$ , the system will adjust the Phase to  $+360.0^{\circ}$  automatically.

### Phase lower negative limit = - 360.0°

The Phase lower negative limit is -360.0°. If the specified Phase is less than -360.0°, the system will adjust the Phase to -360.0° automatically.

### # of Cycles upper limit = 1,000,000 Cyc

The Cycle upper limit is 500,000Cyc. If the specified Cycle is greater than 500,000Cyc, the system will adjust the Cycle to 500,000Cyc automatically.

#### # of Cycles lower limit = 1Cyc

The Cycle lower limit is 1Cyc. If the specified Cycle is less than 1Cyc, the system will adjust the Cycle to 1Cyc automatically.

#### **Trigger Period upper limit = 500.00s**

The Trigger Period upper limit is 500.00s. If the specified Trigger Period is greater than 500.00s, the system will adjust the Trigger Period to 500.00s automatically.

### Trigger Period lower limit = $62.5\mu$ s

The Trigger Period upper limit is 62.5µs. If the specified Trigger Period is less than 1.0µs, the system will adjust the Trigger Period to 62.5µs automatically.

### Delay upper limit = 40s

The Delay upper limit is 40s. If the specified Delay is greater than 40s, the system will

adjust the Delay to 40s automatically.

### **Delay lower limit = 0.0000s**

The Delay lower limit is 0.0000s. If the specified Delay is less than 0.0000s, the system will adjust the Delay to 0.0000s automatically

### Load Impedance upper limit = $10k\Omega$

The Load Impedance upper limit is  $10k\Omega$ . If the specified Load Impedance is greater than  $10k\Omega$ , the system will adjust the Load Impedance to  $10k\Omega$  automatically.

### Load Impedance lower limit = $1\Omega$

The Load Impedance lower limit is  $1\Omega$ . If the specified Load Impedance is less than  $1\Omega$ , the system will adjust the Load Impedance to  $1\Omega$  automatically.

## **Start Phase upper limit = 360.0 Degree**

The Start Phase upper limit is 360.0°. If the specified Start Phase is greater than 360.0°, the system will adjust the Start Phase to 360.0° automatically.

### **Start Phase lower limit = -360.0 Degree.**

The Start Phase lower limit is -360.0°. If the specified Start Phase is less than -360.0°, the system will adjust the Start Phase to -360.0° automatically.

(\*\*denotes the parameter, the content of which will vary according to the setting.)

## **Troubleshooting**

- 1. If the screen does not turn on even if the generator is on, please follow the steps below:
  - (1) Check if the power is correctly connected.
  - (2) Check if the power switch is really on.
  - (3) Restart the instrument after taking the above steps.
  - (4) If it does not work correctly, contact **RIGOL** for our service.
- 2. If the settings are correct but no waveform is generated, please follow the steps below:
  - (1) Check if the Signal Line is correctly connected to the Output terminal.
  - (2) Check the BNC if it works correctly.
  - (3) Check the Output button, if it is turned on.
  - (4) Select PowOn → Latest when all the above steps have been finished. Restart the computer.

# Chapter 5 Specifications

All the specifications apply to the DG2000 Series Function/ Arbitrary Waveform Generator unless specified statement. To meet these specifications, two conditions must be satisfied first:

- The instrument must be operated continuously for more than 30 minutes within the specified operating temperature.
- You must perform the "Self-Cal" operation through the Utility menu if the operating temperature changes by more than 5 °C.

All specifications are guaranteed unless marked "typical"

# **Specifications**

| Frequency Characteristic (DG2041A) |                                                     |  |
|------------------------------------|-----------------------------------------------------|--|
| Waveforms                          | Sine, Square, Ramp, Triangle, Pulse, Noise, DC, Arb |  |
| Sine                               | 1μHz to 40MHz                                       |  |
| Square                             | 1μHz to 40MHz                                       |  |
| Pulse                              | 500µHz to 16MHz                                     |  |
| Ramp                               | 1μHz to 400kHz                                      |  |
| White Noise                        | 20MHz bandwidth (-3dB) (typical)                    |  |
| Resolution                         | 1 μHz                                               |  |
| Accuracy                           | Within 90 days: ±50 ppm                             |  |
|                                    | Within 1 year: ±100 ppm                             |  |
|                                    | 18°C ~ 28°C                                         |  |
| Temperature index                  | < 2 ppm/°C                                          |  |

| Frequency Characteristic (DG2021A) |                                                     |  |
|------------------------------------|-----------------------------------------------------|--|
| Waveforms                          | Sine, Square, Ramp, Triangle, Pulse, Noise, DC, Arb |  |
| Sine                               | 1μHz to 25 MHz                                      |  |
| Square                             | 1μHz to 25 MHz                                      |  |
| Pulse                              | 500μHz to 10MHz                                     |  |
| Ramp                               | 1μHz to 250kHz                                      |  |
| White Noise                        | 20MHz bandwidth (-3dB) (typical)                    |  |
| Resolution                         | 1 μHz                                               |  |
| Accuracy                           | Within 90 days: ±50 ppm                             |  |
|                                    | Within 1 year: ±100 ppm                             |  |
|                                    | 18°C ∼ 28°C                                         |  |
| Temperature index                  | < 2 ppm/°C                                          |  |

| Sine Wave Spectral Purity |                                |              |                     |  |
|---------------------------|--------------------------------|--------------|---------------------|--|
| Harmonic Distortion       |                                | $< 1 V_{pp}$ | > 1 V <sub>pp</sub> |  |
|                           | DC to 20 kHz                   | -70 dBc      | -70 dBc             |  |
|                           | 20 kHz to 100 kHz              | -65 dBc      | -60 dBc             |  |
|                           | 100 kHz to 1 MHz               | -50 dBc      | -45 dBc             |  |
|                           | 1 MHz to 10 MHz                | -40 dBc      | -35 dBc             |  |
| Total Harmonic            | DC to 20 kHz, 1V <sub>pp</sub> | <0.2%        |                     |  |
| Distortion                |                                |              |                     |  |

| Spurious           | DC to 1 MHz < -70 dBc                   |
|--------------------|-----------------------------------------|
| (non-harmonic)     | 1 MHz to 10 MHz < -70 dBc + 6 dB/octave |
| Phase Noise (10kHz | -115 dBc/Hz (typical)                   |
| offset)            |                                         |

| Square Wave Characteristic |                                                         |  |
|----------------------------|---------------------------------------------------------|--|
| Rise/Fall Time             | < 13 ns (10% to 90%) (typical, 1kHz, 1V <sub>pp</sub> ) |  |
| Overshoot                  | < 2% (typical)                                          |  |
| Duty Cycle                 | 20% to 80% (to 8 MHz)                                   |  |
|                            | 40% to 60% (to 16 MHz)                                  |  |
|                            | 50% (>16 MHz)                                           |  |
| Symmetry (below 50%        | 1% of period+ 5ns                                       |  |
| Duty Cycle)                |                                                         |  |
| Jitter                     | 1ns + 100ppm % of period                                |  |

| Ramp Wave Characteristics |                                                                   |  |
|---------------------------|-------------------------------------------------------------------|--|
| Linearity                 | < 0.1% of peak output (typical, 1kHz, 1V <sub>pp</sub> , symmetry |  |
|                           | 100%)                                                             |  |
| Symmetry                  | 0% to 100%                                                        |  |

| Pulse Wave Characteristics |                                                  |  |
|----------------------------|--------------------------------------------------|--|
| Pulse Width                | 2000s max period;12ns min period; 1ns resolution |  |
| Variable Edge Time         | 5ns to 1ms                                       |  |
| Overshoot                  | < 2%                                             |  |
| Jitter                     | 1ns + 100ppm % of period                         |  |

| Arb Wave Characteristics |                          |
|--------------------------|--------------------------|
| Frequency Range          | 1μHz to 12MHz (DG2041A)  |
|                          | 1μHz to 8MHz (DG2021A)   |
| Waveform Length          | 2 to 512 K points        |
| Amplitude Accuracy       | 14 bits (including sign) |
| Sample Rate              | 100MSa/s                 |
| Minimum Edge Time        | 35ns (typical)           |
| Jitter (RMS)             | 6 ns + 30ppm             |
| Non-Volatile Storage     | 4 waveforms              |

| Output Characteristics   |                                                              |                                                             |  |
|--------------------------|--------------------------------------------------------------|-------------------------------------------------------------|--|
| Amplitude <sup>[1]</sup> | DG2041A:                                                     | DG2021A:                                                    |  |
|                          | 20 mV <sub>pp</sub> $\sim$ 10 V <sub>pp</sub> (50 $\Omega$ ) | 20 mV <sub>pp</sub> $\sim$ 5 V <sub>pp</sub> (50 $\Omega$ ) |  |
|                          | 40 mV <sub>pp</sub> ~ 20 V <sub>pp</sub> (High Z)            | 40 mV <sub>pp</sub> $\sim$ 10 V <sub>pp</sub> (High Z)      |  |
| Amplitude Accuracy       | ± (1% of setting + 1 mV <sub>pp</sub> )                      |                                                             |  |
| (1 kHz sine wave)        |                                                              |                                                             |  |
| Amplitude Flatness (1    | < 100kHz 0                                                   | .1 dB                                                       |  |
| kHz sine wave)           | 100kHz to 5 MHz 0                                            | .15 dB                                                      |  |
|                          | 5 MHz to 40 MHz 0                                            | .3 dB                                                       |  |

| DC Offset           |                                                         |
|---------------------|---------------------------------------------------------|
| Range ( peak AC+DC) | $\pm$ 5V (50 $\Omega$ )                                 |
|                     | ±10 V (High Z)                                          |
| Offset Accuracy     | ± ( 2% of  the Offset Setting + 0.5% of the Amplitude + |
|                     | 2mV)                                                    |

| Waveform Output      |                                                         |  |
|----------------------|---------------------------------------------------------|--|
| Impedance            | 50 Ω (typical)                                          |  |
| Isolation            | 42 Vpk max. to Earth                                    |  |
| Protection           | Short-circuit protected; Overload disables the waveform |  |
|                      | output automatically                                    |  |
| AM Modulation        |                                                         |  |
| Carrier Waveforms    | Sine, Square, Ramp, Arb                                 |  |
| Source               | Internal/ External                                      |  |
| Modulating Waveforms | Sine, Square, Ramp , Noise, Arb (2mHz to 20kHz)         |  |
| Depth                | 0% ~ 120%                                               |  |
| FM Modulation        |                                                         |  |
| Carrier Waveforms    | Sine, Square, Ramp, Arb                                 |  |
| Source               | Internal/ External                                      |  |
| Modulating Waveforms | Sine, Square, Ramp, Noise, Arb (2mHz to 20kHz)          |  |
| Frequency Deviation  | DC to 20MHz (DG2041A); 12.5MHz (DG2021A)                |  |
| PM Modulation        |                                                         |  |
| Carrier Waveforms    | Sine, Square, Ramp, Arb                                 |  |
| Source               | Internal/ External                                      |  |
| Modulating Waveforms | Sine, Square, Ramp, Noise, Arb (2mHz to 20kHz)          |  |
| Phase Deviation      | 0 to 360°                                               |  |
| FSK Modulation       |                                                         |  |

| Carrier Waveforms    | Sine, Square, Ramp, Arb                         |  |  |
|----------------------|-------------------------------------------------|--|--|
| Source               | Internal/ External                              |  |  |
| Modulating Waveforms | 50% duty cycle square (2mHz to 100kHz)          |  |  |
| PWM Modulation       |                                                 |  |  |
| Carrier Waveforms    | Pulse                                           |  |  |
| Source               | Internal/ External                              |  |  |
| Modulating Waveforms | Sine, Square, Ramp, Noise, Arb (2mHz to 20kHz)  |  |  |
| Deviation            | pulse width: 0% to 100%                         |  |  |
| Sweep                |                                                 |  |  |
| Carrier Waveforms    | Sine, Square, Ramp, Arb                         |  |  |
| Туре                 | Linear or Logarithmic                           |  |  |
| Sweep Time           | 1 ms to 500 s ± 0.1%                            |  |  |
| Source               | Internal/External/Manual                        |  |  |
| Burst                |                                                 |  |  |
| Waveforms            | Sine, Square, Ramp, Pulse, Noise, Arb           |  |  |
| Types                | Count (1 to 1,000,000 periods), infinite, gated |  |  |
| Start Phase          | -360° to +360°                                  |  |  |
| Internal Period      | $1 \mu s - 500 s \pm 1\%$                       |  |  |
| Gate Source          | External Trigger                                |  |  |
| Trigger Source       | Internal/External/Manual                        |  |  |

| Rear Panel Connector |                                                       |  |  |
|----------------------|-------------------------------------------------------|--|--|
| External AM          | $\pm$ 5 Vpk = 100% modulation                         |  |  |
| Modulation           | 5kΩ input impedance                                   |  |  |
| Input/Output         | 10MHz ± 500Hz                                         |  |  |
| Frequency Range      |                                                       |  |  |
| Input/Output Voltage | 80mV <sub>pp</sub> ~10V <sub>pp</sub> /0dBm (typical) |  |  |
| Range                |                                                       |  |  |
| Input/Output         | 2kΩ/50Ω (typical), AC coupled                         |  |  |
| Impedance            |                                                       |  |  |
| Time                 | <1s                                                   |  |  |
| External Trigger     | TTL-compatible                                        |  |  |

| Trigger Input   |                                |  |  |
|-----------------|--------------------------------|--|--|
| Input Level     | TTL-compatible                 |  |  |
| Slope           | Rising or falling (selectable) |  |  |
| Pulse Width     | > 100 ns                       |  |  |
| Input Impedance | $>$ 10 k $\Omega$ , DC coupled |  |  |

### RIGOL

| Linear Sweep  | < 500 μs (typical) |  |
|---------------|--------------------|--|
| Latency Sweep | < 500 ns (typical) |  |

| Trigger Output   |                                     |  |
|------------------|-------------------------------------|--|
| Level            | TTL-compatible into $>1$ k $\Omega$ |  |
| Pulse Width      | > 400ns (typical)                   |  |
| Output Impedance | 50Ω (typical )                      |  |
| Maximum Rate     | 1 MHz                               |  |

## Notes<sup>[1]</sup>:

- The amplitude range ( $50\Omega$ ): The output frequency >10MHz, the amplitude range:  $20mV_{pp} \sim 5V_{pp}$ ;
- The amplitude range (High Z): The output frequency >10MHz, the amplitude range:  $40\text{mV}_{pp} \sim 10\text{V}_{pp}$ .

# **General Specifications**

| Display            |                              |
|--------------------|------------------------------|
| Туре               | Black and White LCD Screen   |
| Resolution         | 256 Horizontal x 64 Vertical |
| Grey Degree        | 4 Degree Grey Level          |
| Contrast (typical) | 150 : 1                      |
| Light (typical)    | 300 nit                      |

| Power       |                                               |
|-------------|-----------------------------------------------|
| Supply      | 100-240 VAC <sub>RMS</sub> , 45-440Hz, CAT II |
| Consumption | Less than 50W                                 |
| Fuse        | 2A, T Level , 250V                            |

| Environment       |                                     |  |  |
|-------------------|-------------------------------------|--|--|
| Temperature Range | Operation: 10°C∼+40°C               |  |  |
|                   | Non-operation: -20°C ~+60°C         |  |  |
| Cooling           | Natural cooling                     |  |  |
| Humidity Range    | Below +35°C: ≤90% relative humidity |  |  |
|                   | +35℃~+40℃: ≤60% relative humidity   |  |  |
| Height Range      | Operation: below 3,000m             |  |  |
|                   | Non-operation: below 15,000m        |  |  |

| Instrument Specifications |                  |       |  |
|---------------------------|------------------|-------|--|
| Dimension                 | Width            | 232mm |  |
|                           | Height           | 108mm |  |
|                           | Depth            | 288mm |  |
| Weight                    | Package excluded | 2.7Kg |  |
|                           | Package Included | 4Kg   |  |

| IP Protection |  |
|---------------|--|
| IP2X          |  |

| Calibration Interval |  |
|----------------------|--|
| One year suggested   |  |

# Chapter 6 Appendix

# **Appendix A DG2000 Series Accessories**

#### **Standard Accessories:**

- A Power Cord that fits the standard of the destination country.
- A USB Data Cable.
- A Use's Guide.

## **Optional Accessories:**

- BNC cable.
- RS-232 data cable.

All the accessories (standard and optional) can be purchased by contacting your local RIGOL office.

# **Appendix B Warranty**

**RIGOL** warrants its products' mainframe and accessories in materials and technics within the warranty period. During the period concerned, **RIGOL** guarantees the free replacement or repair of products which are approved defective.

To get repair service or obtain a copy of the whole warranty statement, please contact with your nearest **RIGOL** sales and service office.

**RIGOL** do not provide any other warranty items except the one being provided by this summary and the warranty statement. The warranty items include but not being subjected to the hint guarantee items related to tradable characteristic and any particular purpose. **RIGOL** will not take any responsibility in cases regarding to indirect, particular and ensuing damage.

## **Appendix C General Care and Cleaning**

#### **General Care**

Do not store or leave the instrument in the place where LCD screen can be exposed to direct sunlight for long periods of time.



**CAUTION:** To avoid damage to the instrument or probes, do not expose them to sprays, liquids, or solvents.

### Cleaning

Check the instrument frequently according to the operation conditions; follow the steps below to clean the exterior surface of the instrument:

- 1. Wipe the dust on the outside of the instrument with a lint- free cloth.
- 2. Use a soft cloth dampened with water to clean the instrument. Please cut off the power. To avoid damage to the surface of the instrument, do not use any abrasive or chemical cleaning agent.



**Warning:** To avoid any short-circuit or body damage because of the moisture, make sure that the instrument is dry before restarting.

# **Appendix D Contact RIGOL**

If you have any problem or requirement during using our products, please contact **RIGOL** Technologies, Inc. or the local distributors.

**Domestic:** Please call

Tel: (86-10) 8070 6688 Fax: (86-10) 8070 5070

Service & Support Hotline: **800 810 0002** 9:00 am -5: 00 pm from Monday to Friday

Or by e-mail:

## Service@rigol.com

Or mail to:

**RIGOL** Technologies, Inc.

156# CaiHe Village, ShaHe Town, ChangPing District, Beijing, China

Post Code: 102206

Overseas: Contact the local RIGOL distributors or sales office.

For the latest product information and service, please visit our website:

www.rigolna.com.

# Index

| AM2-31                       | The DG2000 User Interface 1-7          |
|------------------------------|----------------------------------------|
| Appendix6-1                  | The Front/Rear Panel 1-4               |
| Common Prompt Messages4-1    | The interconnection of DG2000 and      |
| Conflict Settings4-6         | DS10002-52                             |
| Contact RIGOL6-4             | The Menu/Graph Mode 2-2                |
| Data Overflow4-10            | To Generate Burst 2-45                 |
| DG2000 Series Accessories6-1 | To Generate Sweep 2-42                 |
| Edge Time2-13                | To Generate the Modulated Waveform     |
| Error Messages4-5            | 2-30                                   |
| Factoruy Default2-77         | To Set Arbitrary Signals 2-17          |
| FM2-33                       | To Set Modulate/ Sweep/Burst 1-11      |
| Frequency Deviation2-35      | To Set Noise Signals 2-16              |
| FSK2-36                      | To Set Output Parameter 2-63           |
| General Care and Cleaning6-3 | To Set Pulse Signals 2-12              |
| General Inspection1-2        | To Set Ramp Signals 2-10               |
| General Specifications5-7    | To Set Sine Signals 2-3                |
| Handle Adjustment1-3         | To Set Square Signals 2-7              |
| Mod2-36, 2-38, 2-46          | To Set the DC Output 2-60              |
| PM2-38                       | To Set the Sync Output 2-61            |
| Pulse Width2-13              | To Set the System 2-72                 |
| PWM2-40                      | To Set the Utility Function 2-58       |
| Set a Waveform1-8            | To Set Trigger/Output 1-13             |
| Set the Gated Burst2-48      | To Store and Recall 2-49               |
| Set the N-Cycle Burst2-46    | To Use Digital Input 1-14              |
| Specifications5-2            | To Use Store/Utility/Help Function1-15 |
| Square2-16                   | Troubleshooting 4-17                   |
| Store/Recall2-50, 2-51, 2-60 | Use the Built-in Help System 2-81      |
| Test                         | Warranty 6-2                           |